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General information  
 
Material properties: 
 

The design compressive strength of concrete: cc ck
cd

c

ff α
=

γ
 with αcc = 1,0 and γc = 1,5 

The design tensile strength of concrete: ct ctk,0,05
ctd

c

f
f

α
=

γ
 with αct = 1,0 and γc = 1,5 

Concrete strength class C40/50: 
compression: 
fck = 40 N/mm2  
tension: 
fctk,0,05 = 2,5 N/mm2  
 
Concrete strength class C45/55: 
compression: 
fck = 45 N/mm2  
tension: 
fctk,0,05 = 2,7 N/mm2  
 
Stress-strain diagram for concrete in compression 

 
 
Concrete strength class up to C50/60: 
 
εcu3 = 3,5 ‰ 
εc3 = 1,75 ‰ 
 
Normal strength concrete compression zone characteristics of a rectangular cross-section 
(< C50/60) 
 
sectional area factor  α = 0,75 ( A = α b xu )   
distance factor           β = 0,39 ( y = β xu)       
 

if εc3= εcu3/2 
α=0.75 
β=0.39 
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Additional information 
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Prestressing steel: 
 
 Mechanical properties prestressing steel 
Strength 
class 

Type Tensile 
strength 

Failure 
strain 

0,1% 
fractile 

Permissible tensile stress Kink in σ-ε 
diagram 
(ULS) 

Modulus of 
elasticity During 

stressing 
During stressing 

with accurate 
jacking 

Initial 
stress 

fpk fpk/γs εpu fp0,1k σp,max σp,max σpm0 fpd Ep 
MPa MPa ‰ MPa MPa MPa MPa MPa GPa 

Y1030H bar 1030 936 35 927 7731 773b 773 843 205 or 170 
Y1670C wire 1670 1518 35 1503 1336 1428 1253 1366 205 
Y1770C wire 1770 1609 35 1593 1416 1513 1328 1448 205 
Y1860S7 strand 1860 1691 35 1674 1488 1590 1395 1522 195 

 
Stress-strain diagram of prestressing steel 

 
 
Y1860S7:     fpk / γs = 1860 / 1,1 = 1691 N/mm2  
 fpd  = fp0,1k / γs = 1674 / 1,1 = 1522 N/mm2  
 εuk = 35 ‰  
 max. initial stress σpi = σpm0 = 1395 N/mm2 ; σp,max = 1488 N/mm2 (at jacking)  
 Ep = 195 · 103 N/mm2 
 
Note: 
The strain allowed in ULS (εud) is related to εuk.  
The ratio is εud / εuk = 1,0 in these examples. A National Annex to EN 1992-1-1 might prescribe a 
different ratio, e.g. 0,9. Apart from a cut-off at εud, it has no further impact on the stress-strain 
diagram. 
 
Prestressing force including frictional loss: 
 

( )
0 0( ) ( 0) k x

m mP x P x e−µ θ += = ⋅  
friction coefficient   µ   
Wobble-factor  k  
 

                                                           
 
 

εuk 
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Reinforcing steel: B500: 
 
 fyd = 500 / 1,15 = 435 N/mm2 
 bond factor: ξs = 1,0 
 Es = 200 · 103 N/mm2 

 
Stress-strain diagram of reinforcing steel  
 

 
 
εud = 45 ‰ 
 
 
Load specifications (general): 
 

Partial load factors in ultimate limit state (ULS) design: 
permanent load : γG = 1,2 
variable load : γQ = 1,5 
prestressing load : γP = 1,0 
 
Partial load factors in serviceability limit state (SLS) design: 
All loads : γ = 1,0 

 
Reinforced/prestressed concrete: volumetric mass (density) = 25 kN/m3  
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Crack width: 

wmax =  
2
1

⋅ ctm

bm

f
τ

⋅
p,eff

Ø
ρ

⋅
s

1
E

⋅ (σs – α⋅σsr + β⋅εcs⋅ Es ) 

where 
 
σs steel stress in a crack under external tensile load 
 
σsr maximum steel stress in the crack in the crack formation stage 
 tension:   follows from the cracking axial force (based on fctm) 
 bending:  follows from the cracking bending moment (based on fctm) 
 
εcs shrinkage of the concrete (> 0) 
 
ρp,eff reinforcement ratio As/Ac,eff based on the cross-sectional area of the “hidden tensile 

member” 
 
hc,eff   height of the effective concrete tensile zone with regard to cracking: 
 
fctm mean concrete tensile strength 

τbm mean bond stress between concrete and steel 
 
Values for τbm, α and β  for various conditions.  

 
 crack formation stage stabilised cracking stage 

short term 
loading 
 

  α   = 0,5  

  β   = 0 
  τbm = 2,0 fctm 

  α   = 0,5  

  β   = 0 
  τbm = 2,0 fctm 

long term or 
dynamic loading 
 

  α   = 0,5  

  β   = 0 
  τbm = 1,6 fctm 

  α   = 0,3  

  β   = 1 
  τbm = 2,0 fctm 

 
The height of the effective area is: 
 
tension: 

c,eff

c,eff

2,5 ( )
/ 2

h h d
h h

= −

≤
 

bending: 

( )
c,eff

c,eff

2,5 ( )

/ 3

h h d

h h x

= −

≤ −
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Effective concrete area: 
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Example 1 – Slab, crack width and punching shear resistance 
 
A building uses the outrigger system. According to the requirements of the architect, the exterior 
columns are reinforced concrete columns and the ground floor is left open. The structural system is 
given in Figure 1.1. The thickness of the concrete floor is 200 mm. The cross-sections of the square 
columns are 175 mm × 175 mm. 
 

 
 
Figure 1.1  Design of a building.  
 
Parameters: 

 
Concrete strength class : C25/30 
  weight density concrete : γc = 25 kN/m3 
  mean concrete tensile strength : fctm = 2.6 N/mm2 
  bond strength : τbm = 2 fctm 
  modulus of elasticity : Ecm = 31000 N/mm2 
  
Reinforcement class B500B    : fyd = 435 N/mm2 
  modulus of elasticity : Es = 200000 N/mm2 
  
Concrete Column : 175 mm × 175 mm 
Concrete slab  
  thickness : 200 mm 
  floor finishing : 0.4 kN/m2 
Variable load : qQk = 4.0 kN/m2 
Quasi-permanent combination 
(SLS) 

: ψ2 = 0.5 (for qQ) 

Partial load factors (ULS) : γG = 1.2 
 : γQ = 1.5 
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Additional information: 
 
Crack width control: 
 

 

( )ctm
max s sr

bm s,eff s

s
c ctm s

ccrack
sr

s s

1 Ø 1
2

1

fw
E

EA f
EN

A A

σ α σ
τ ρ

ρ
σ

= −

 
+ 

 = =

 

 

 
 
 
Punching shear; axial force and bending moment: 
 
Approximated safe values for β (load eccentricity factor) according to the Eurocode: 
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Question 1.1 
 
Calculate the (design) load of the exterior column at ULS and SLS load combinations.  
 
Hint: Consider the shaded part of the slab in Figure 1.1(b) as a simply supported one-way slab, which 
implies that half of the distributed load on this slab strip is transferred to the exterior column. 

Answer 1.1 
 
self weight:  slab 0.2 25ch γ× = ×   = 5.0 kN/m2 

floor finishing:    = 0.4 kN/m2 
 
dead weight:  Gkq    = 5.4  kN/m2 
variable load:  Qkq    = 4.0  kN/m2 
 
ULS:   Ed G Gk Q Qkq q qγ γ= × + ×  1.2 5.4 1.5 4.0= × + ×   212.48 kN/m=  
  Ed E dP q a b= × ×   12.48 (6.0 / 2) 4.0= × ×  149.76 kN=  
 
SLS:  2Gk Qkq q qψ= + ×   5.4 0.5 4.0= + ×   27.4 kN/m=  
  P q a b= × ×    7.4 (6.0 / 2) 4.0= × ×  88.8 kN=  
 
Question 1.2  
 
The tensile reinforcement in the columns at the lowest floor level is 4 bars Ø12 mm. Check the 
capacity of the column (ULS). 

Answer 1.2  
 

2 2 2
s

Ed
s

s

1 14 Ø 4 12 452.39 mm
4 4

149.76 1000 331 MPa 435 MPa
452.39

A

P
A

π π

σ

= × = × × =

= = × = <
  

Result: ULS capacity is OK. 
 
Question 1.3 
 
Will the exterior columns crack JUST AFTER the installation of the slab? 

Answer 1.3 
 
Column tensile force from self-weight of the slab P0 and column cracking force Pcr:  

0 5, 4 4,0 (6,0 / 2) 64,8

cr ctm c ctm e s

P kN
P f A f Aα

= × × =
= +

  

200000 6.45
31000

s
e

c

E
E

α = = =  

Cracking force (concrete and steel contributions): 
2

cr 2.6 175 2.6 6.45 452.39 87.2 kNP = × + × × = ,  0crP P> →  the column will not crack 
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Question 1.4  
 
Will the exterior column crack after the building is in use (SLS)? If so, calculate the long term crack 
width wmax and check whether the calculated crack width is smaller than 0.20 mm. If not, calculate 
at which variable load qQk the column cracks and calculate wmax at that load. (Assume that the full 
column cross-section is effective). 

Answer 1.4  
 
SLS load; see Answer 1.1: 
 
𝑃𝑃 = 88.8𝑘𝑘𝑘𝑘 > 87.2𝑘𝑘𝑘𝑘 = 𝑃𝑃𝑐𝑐𝑐𝑐 → the column will crack. 
 
Calculate the steel stress directly after cracking σsr and the steel stress σs in SLS: 
 

(1 )ctm
sr e

fσ α ρ
ρ

= +   

where 2
452.39 1.48%
175

s

c

A
A

ρ = = =  

ctm
max s sr

bm s

2.6 (1 6.45 0.0148) 192.8
0.0148

88.8 1000 196.29
452.39

1 1 ( E )
2

sr

Ed
s

s

sc s

MPa

P MPa
A

fw
E

Ø

σ

σ

σ ασ βε
τ ρ

= + × =

= = × =

= − +

 

 

 
 

0,3α = , assuming 0scε = →  
 

max
1 1 1 (196.29 0.3 192.8) 0.14 mm 0.2 mm
2 2

12
0.0148 200000

w = × × × × − × = < ; OK 
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Question 1.5  
 
Is the calculated crack width related to the phase “fully developed crack pattern” or not? 

Answer 1.5  
 
The SLS load is greater than the cracking load and, therefore, the tensile member is in the “fully 
developed crack pattern stage” (stabilized cracking); not in the “not fully developed crack pattern 
stage” (crack formation stage). 
Answer: Yes. 

Question 1.6  
 
Draw the control perimeter u1 of the edge column, and calculate its value. 

Answer 1.6. 
 

 
 
Calculate the length of the control perimeter u1 of the edge column: 
First calculate d, the effective slab height. 
 
Assume that the slab is reinforced with rebars, mesh Ø 12 mm, and has a concrete cover of 20 mm. 
 

( )200 20 12 / 2 174 1 168
200 20 12 12 / 2 162 2

x
x y

y

d mm
d d d mm

d mm
= − − = 

→ = + == − − − = 
  

 
2 2 168 336 mmR d= = × =   

1 1 2
1 12 2 4 2 175 175 2 4 168 1581 mm
4 4

u c c d π π= + + ⋅ ⋅ ⋅ = ⋅ + + ⋅ ⋅ ⋅ ⋅ =  
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Question 1.7  
 
At the column - slab connection, the slab is provided with a reinforcement mesh at the top; Ø12 
spaced 200 mm in both x and y direction. Check the punching shear capacity of the edge column. 
Assume that β = 1,4. 

Answer 1.7  
 
The design value of the punching shear stress of the edge column can be calculated as (use the load 
transferred to the edge column, PEd, from Answer 1.1): 

3

1 1

149,76 101,4 0,79 MPa
1581 168

Ed Ed
Ed

V Pv
u d u d

β β ⋅
= = = ⋅ =

⋅
  

 
The punching shear resistance stress of the edge column is: 

1
3

Rd,c ck 1 cp0,12 (100 )v k f kρ σ= +  with a minimum of 
3/2

min ck 1 cp0,035v k f k σ= +   

where cpσ  is the concrete stress in the cross-section from an axial load and/or prestressing. In 

this case cpσ =0. 

 
A reinforcement mesh Ø12-200 is applied: 

2 2
21000 12 1000 565,49 mm /m

4 4 200sx sy
da a

s
π π

= = ⋅ = ⋅ =   

565,49 0,32%
174 1000

0,34%
565,49 0,35%

162 1000

sx
x

x
x y

sy
y

y

a
d
a
d

ρ

ρ ρ ρ
ρ

= = = ⋅  → = =
= = =
⋅ 

  

ck

2001 2,0

2001 2 2,0
168

C25 / 30 25 MPa

k
d

k k

f

= + ≤

= + > → =

→ =

 

{ }
1
3

Rd,c
Rd,c Rd,c min Ed

3/2
min

0,12 2 (100 0,0034 25) 0,49 MPa max , 0,49 MPa ( 0,79 MPa)
0,035 2 25 0,49 MPa

v v v v v
v


= ⋅ ⋅ ⋅ ⋅ = → = = < =
= ⋅ = 

 

The punching shear capacity of the slab is too small. 
 
Structural measures should be taken. These measures can consist of the application of punching shear 
reinforcement (hooks, stirrups or dowels) or a drop panel (the local increase of slab thickness). Take 
into account that the upper limit for punishing shear resistance is  

max Rd,c Ed1.6 0,49 MPa = 0.78MPa ( 0,79 MPa)k v v× = × < = and therefore, in this case, strictly speaking, 

only application of punching shear reinforcement is not enough.  
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Question 1.8  
 
When the punching shear capacity is too small, a drop panel can be added to increase the thickness 
of the slab locally. Calculate the thickness of the drop panel to avoid the use of punching shear 
reinforcement. 

Answer 1.8  
 
The thickness of the slab should be such that the design punching shear stress is smaller than the 
punching shear resistance stress: 
 

3
Ed Ed

Ed
1 1

149,76 101,4 0,49 MPa
(3 2 )

V Pv
u d u d c d d

β β
π
⋅

= = = ⋅ ≤
+

 

where 175 mmc =  →  26,28 525 427886 0d d+ − ≥  
223 mm
223 20 12 255 mm

d
h

≥
≥ + + =

 

 
Make the drop panel such, that the local height of the slab is h >270 mm. 
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Example 2 – Slab 
 
A concrete slab floor is supported by beams and columns. The floor plan is given in Figure 2.1. The 
beams can be modelled as rigid line supports. Rotation is allowed on the beams. 
 

 
 
Figure 2.1  Floor plan of a two-way slab 
 
Parameters: 
 
Total slab thickness : 250 mm 
Concrete cover : 20 mm 
Design load : 15 kN/m2 
Concrete strength class : C25/30 
Reinforcement class B500B    : fyd = 435 N/mm2 

 
Additional information: 
 
Concrete slabs 
Shear force calculation: 
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Question 2.1  
 
Determine the maximum design sagging moment my in the middle of the slab and the hogging 
moment mx at the intermediate beam position using the strip method. For the positions of mx and 
my, see Figure. 2.1. 
 
Hint: Transfer the load in two directions using the table presented below (Figure 2.2). 

 
 
Figure 2.2 Strip method load transfer results (uniformly distributed load) 
 
Bending moment table of beams with different boundary conditions: 
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Answer 2.1 
 
Uniformly distributed load: 15 kN/m2. 
 
The load transfer results from figure 2.2 are based on having the same deflection for x and y 
direction strips.  
 
According to Figure 2.2, the second slab type from the left hand side: 
 
→  5.6xl m=   4.0yl m=  
 

4 4

4 4 4 4

5 5 4.0 0.394
2 5 2 5.6 5 4.0
1 0.394 0.606

y
x

x y

y

l
k

l l
k

×
= = =

+ × + ×

= − =

  

 
Result: 
39,4% of the uniformly distributed load is transferred in x-direction; 60,6% in y-direction. 
 
y-direction (model: 1 span; simply supported at both supports): 

2 21 1 15 0.606 4.0 18.2 kNm/m
8 8y y ym q k l= × × × = × × × =   

 
x-direction (model: 2 spans; simply supported at both end supports; uniform load over both spans): 
Bending moment at the intermediate support: 

2 21 1 15 0.394 5.6 23.2 kNm/m
8 8x x xm q k l − = − × × × = × × × = − 

 
  

 
Additional information 

 
x-direction: 
Bending moment at midspan position: 

2 2 21 1 1 1 15 0.394 5.6 11.6 kNm/m
2 8 8 16x x x x xm qk l qk l − = − + = ⋅ ⋅ ⋅ = + 

 
  

 
Note that the maximum positive bending moment in x-direction is not 
at midspan position, but at 3/8l from an end support, see figure below 
(Mspan,max at the position where the shear force V = 0).  
 

 
 
Result: 

2 2
max

3 3 1 3 9( )
8 8 2 8 128

M ql l q l ql= × − =   
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Question 2.2  
 
Determine the maximum design sagging moment my in the middle of the slab and the hogging 
moment mx at the intermediate beam position with the theory of elasticity. For the position of mx 
and my, see Figure. 2.1. 

 
Hint: Use the table presented in Figure 2.3 (NEN6720 table 18) 

 
 
Figure 2.3: Bending moments in a slab (uniformly distributed load) according to the theory of 
elasticity 
 

plate support conditions: 
- solid line = line support, no 
rotational fixity 
- two solid lines = line support 
and fully fixed (no rotation) 
 
mvx is the positive moment 

per unit length in a cross-
section along the longer 
edge (ly) 

mvy is the positive moment 
per unit length in a cross-
section along the shorter 
edge (lx) 

msx is the negative moment 
per unit length in a cross-
section along the longer 
edge (ly) 

msy is the negative moment 
per unit length in a cross-
section along the shorter 
edge (lx) 

pd  is the design value of the 
uniformly distributed 
load 
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Answer 2.2 
 
Use the following part of Figure 2.3 (slab type VA; line supports; 3 sides vertically supported only; 
1 side completely fixed): 
 

 
According to NEN 6720 table 18 →  4.0xl m=  5.6yl m= 1.4y

x

l
l

= . →  Use the coefficients from the 

last column. 
 

2 2

2 2

0.001 54 0.054 15 4.0 12.96 kNm/m

0.001 108 0.108 15 4.0 25.92 kNm/m
y vx d x

x sy d x

m m p l

m m p l

= = × × × = × × =

= = − × × × = − × × = −
  

 
Question 2.3  
 
An engineer decides to apply a rebar mesh of Ø8 – 200 mm in both directions in the slab as both 
bottom and top reinforcement. Is this amount of reinforcement applied sufficient to resist the design 
bending moments? If not, give your own design. (Use the moment calculated in Question 2.2; z can 
be approximated by 0.9d). 

Answer 2.3  
 
Calculate the amount of reinforcement, the effective height of the cross-section and the bending 
moment resistance of the cross-section (assume that the reinforcement in x-direction is in the first 
layer from top and bottom): 

2
2

Rd

Rd

1000 8 5 50.2 251 mm /m
200 4

0.9
8250 20 226 mm
2

251 435 0.9 226 22 kNm/m
1000000

s

s yd s yd

a

m A f z A f d

d

m

π= = ⋅ =

= × × = × ×

= − − =

× × ×
= =

  

 
The maximum bending moment is at the intermediate support position.  
Absolute value: 25,92 kNm/m: Rd Edm m< →  not OK 
 

Additional information: 
 
Apply a mesh Ø8-150mm (PS 335, A = 335 mm2/m) 
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Rd Ed,x

100050.2 435 0.9 226
150 29.33 kNm/m

1000000
m m

× × × ×
= = > ; OK 

Question 2.4  
 
Indicate with a drawing the part(s) of the slab where torsional reinforcement is needed. 

Answer 2.4  
 
Use the following part of Figure 2.3: Slab type VA; line supports; 3 sides vertically supported only; 
1 side completely fixed): 
 

 
 
Torsional reinforcement is required in 2 parts of slab type VA, each 0,3lx * 0,3 lx (length * width)  
 

 

Question 2.5  
 
Indicate with a sketch at which position the maximum shear stress occurs, and determine the design 
value of the shear stress. 
 

Concrete slabs 
Shear force calculation: 

x0.3 0.3 4.0 1.2 ml = × =   
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Answer 2.5  
 
The load transfer is modelled using envelopes. The 90º corner angles are split: 

• 2 times 45º for a corner where two identical types of supports meet (vertical, rigid line 
support; no rotational fixity) 

• 30º + 60º where a vertical, rigid line support (no rotational fixity) and a completely fixed 
line support meet. 

 
 
The maximum shear force per unit length occurs at the intermediate support (load transfer in x-
direction).  

y 3
d

Ed
Ed,max

y

4000tan 60 3 15 102 2 0,23 MPa
226

l
q

Vv
d l d

−   ° ⋅ ⋅ ⋅ ⋅   
   = = = =  

 
Additional information: 

 
The total load transferred to the line support can be assumed to be uniformly 
distributed over the length of the support (ly), and then the average value of the shear 
stress in the slab is: 

   

y 3
y d

Ed
Ed

y y

1 4000 1tan 60 3 4000 15 102 2 2 2 0,115 MPa
4000 226

l
l q

Vv
l d l d

−   ° ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   
   = = = =

⋅
 

 

60° 

60° 

45° 

45° 
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Question 2.6  
 
Check the shear capacity of the slab. 

Answer 2.6  
 
The design value of the shear resistance of a concrete structure without shear reinforcement has a 
minimum value that can be always applied (EN 1992-1-1, eq. (6.3N)): 

3/2
min ck0,035

2001 2,0

2001 1,94
226

v k f

k
d

k

=

= + ≤

= + =

  

ckC25 / 30 25 MPaf→ =  
 

3/2
min Ed0,035 1,94 25 0,47 MPav v= ⋅ = > →  The shear capacity of the slab is greater than the 

design value of the shear stress; OK. 
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Example 3 – Slab and crack width  
 
A reinforced concrete balcony slab is supported at two sides by beams, see fig. 3.1. It is not connected 
to the main building at the longer edge. The clear spacing between the two supporting beams is 3,35 
m. The slab is subjected to its self-weight, a permanent load and a live load. The reinforcement in 
the length direction (x direction) is Ø10 mm – 200 mm (5 bars per meter). The concrete cover is 
15 mm. The slab thickness is 150 mm. The width of the beams is 300 mm. 
 

 
Figure 3.1  Balcony slab.  
 

Parameters: 
 

Concrete strength class : C20/25 
  weight density concrete : γ = 25 kN/m3 
  mean concrete tensile strength : fctm = 2,2 N/mm2 
  modulus of elasticity : Ecm = 30000 N/mm2 
  Poison’s ratio : v = 0,2 
  
Reinforcement class B500B    : fyd = 435 N/mm2 
  modulus of elasticity : Es = 200000 N/mm2 
  
Concrete slab thickness : 150 mm 
                       floor finishing : qs = 0,4 kN/m2 
Variable load : qQk = 4,0 kN/m2 

 
Additional information: 
 

Crack width control: 
 

 

( )ctm
max s sr

bm s,eff s

sr
s

sr

1 Ø 1
2

Member loaded in bending:
follows from the cracking
bending moment

crack

fw
E

M
zA

σ α σ
τ ρ

σ

σ

= −

=  
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Question 3.1  
 
Determine the effective span of the balcony slab. Use the figure below (EN 1992-1-1 fig. 5.4). 
 

 

Answer 3.1 
 
The effective span, leff, of a member can be calculated as follows: 
 

1 2eff nl l a a= + +    
 
where ln is the clear distance between the faces of the supports and a1 and a2 corresponds to case (a) 
non-continuous members from EN 1992-1-1, fig 5.4: 
 

 

h=150mm 

t=300mm 

1 2
1 1 1 1min ; min 0,15; 0,3 0,075 m
2 2 2 2

3,35 2 0,075 3,5 meff

a a h t

l

   = = = ⋅ ⋅ =   
   

= + ⋅ =
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Question 3.2 
 
Determine the bending moment ME,x at SLS (assuming that all load factors are 1,0). 

Answer 3.2 
 
self weight:  slab 0.15 25ch γ× = ×   = 3.75 kN/m2 

floor finishing:    = 0.4 kN/m2 
 
dead weight:  Gkq    = 4.15  kN/m2 
variable load:  Qkq    = 4.0  kN/m2 
 
SLS:  2Gk Qkq q qψ= +   4,15 1,0 4,0= + ×   28,15 kN/m=  

  
2

E,x 8
effql

M =    
28,15 3,5

8
⋅

=    12,48 kNm/m=  

 
Question 3.3 
 
Verify whether or not the slab cracks when subjected to the bending moment ME,x. Use the flexural 
tensile strength of concrete. 
(Note: the flexural tensile strength is fctm,fl = (1,6 – h/1000)fctm according to the Eurocode). 

Answer 3.3 
 
The flexural tensile strength is: 

ctm,fl ctm(1,6 /1000) (1,6 150 /1000) 2,2 3,19 MPaf h f= − = − ⋅ =   

 
The cracking bending moment of the slab is: 

2 2
6

cr ctm,fl E,x
1000 150 3,19 11,96 10 Nmm/m 11,96 kNm/m 12,48 kNm/m

6 6
bhM f M⋅

= = ⋅ = ⋅ = ≤ =   

At the SLS bending moment MEx the slab will crack. 
 

Question 3.4 
 
When the slab cracks, determine the height of the compressive zone x and calculate the steel stress 
σsr directly after cracking, which is at the cracking bending moment Mcr.  

Answer 3.4 
 
The height of the compression zone can be calculated as follows: 

2( ) 2e e e
x
d

α ρ α ρ α ρ= − + +    where    200000 6.67
30000

s
e

c

E
E

α = = =   

21 1000 /
4s

Ø s

bd
A
bd

π
ρ

⋅
= = ,   150 15 10 / 2 130 mmd = − − =  
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21 10 1000 / 200
4 0,3%

1000 130

π
ρ

⋅
=

⋅
=

⋅ ⋅
 

26,67 0,003 (6,67 0,003) 2 6,67 0,003 0,182x
d

= − ⋅ + ⋅ + ⋅ ⋅ =  

 
The height of the compression zone is: 

0,182 130 23,6 mmx = ⋅ =   
 
The stress in the steel can be calculated as: 

cr
sr

s

M
A z

σ = ,  23,6130 122,1 mm
3 3
xz d= − = − =   

6

sr
11,96 10 249 MPa

392,7 122,1
σ ⋅

= =
⋅

  

Question 3.5 
 
Indicate the height of the effective tensile area around the tensile reinforcement of the slab hc,eff. 
Based on that, calculate the effective reinforcement ratio ρs,eff. 
Hint: Use the figure below: Effective concrete area [15.4] (EN 1992-1-1 fig. 7.1). 
 

 

Answer 3.5 
 
The depth of effective tensile area around the tensile reinforcement hc,eff can be calculated as follows 
(EN 1992-1-1, Section 7.3.2): 
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c,eff

2,5 ( ) 2,5 (150 130) 50
min min min 42,13 mm

( ) / 3 (150 23,6) / 3 42,13
h d

h
h x

− ⋅ −     
= = = =     − −     

  

s
s,eff

c,eff

392,7 0,93%
1000 42,13

A
bh

ρ = = =
⋅

  

Question 3.6 
 
Calculate the maximum crack width wmax at a SLS bending moment of 12,48 kNm/m (long term 
loading). Use the tensile member model. 
 
Maximum crack width is calculated as follows (tensile member model): 

ctm
max s sr

bm s,eff s

1 1 ( )
2

fw
E

Ø σ ασ
τ ρ

= −   

 
where σsr is the steel stress directly after cracking and σs is the steel stress at SLS.  
 

 

Answer 3.6 
 
Maximum crack width: 

ctm
max s sr

bm s,eff s

1 1 ( )
2

fw
E

Ø σ ασ
τ ρ

= −  where σsr is the steel stress directly after cracking. 

 
Steel stress in a crack at SLS (cracked cross-section loaded in pure bending): 
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6

s
12,48 10 260,3 MPa

392,7 122,1
σ ⋅

= =
⋅

 

0.3
2

α
τ

= 
→= bm ctmf max

1 1 10 1 (260,3 0,3 249) 0,25 mm
2 2 0,0093 200000

w = ⋅ ⋅ ⋅ ⋅ − ⋅ =  

 
 
     Additional information 
 

Note that σsr is the steel stress directly after cracking, which is calculated from the 
cracking bending moment and not from the tensile member model. Using bending 
moment for the calculation of σsr results in more consistent results in case it is a 
prestressed element.  

 
Question 3.7 
 
Based on the reinforcement configuration in x direction, determine the minimum reinforcement area 
in y direction. 

Answer 3.7 
 
Based on the design bending moment in x direction and Poisson’s ratio, the bending moment in y 
direction is Ed,y Ed,x Ed,x0, 2M M Mν= ≈ .  

Amount of secondary transverse reinforcement required to resist this bending moment: 
Ed,x

sy
y yd

0, 2M
A

z f
=   

Additional information: 
 

In this example, the reinforcement in the y direction has not to fulfil 
the requirement of minimum reinforcement according to the design 
code (i.e. after concrete cracking, the steel can resist the full tensile 
force, so that after cracking, the slab/beam does not directly fail). 
This requirement makes that brittle failure does not occur. For pure 
bending, the result would be: 

2

ctm,fl
cr

sy
y yk y yk

6
bh fMA

z f z f
= =  

(Note that EN 1992-1-1 uses the axial concrete tensile strength fctm, 
whereas other codes might use the flexural tensile strength). 
 
In this example, however, it is a one way slab. In that case, the 
secondary transverse reinforcement should not be less than 20% of 
the principal reinforcement. 
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Example 4 – Slab and punching shear resistance 
 
A building uses the outrigger system. The structural system is illustrated in Figure 4.1. The thickness 
of the concrete floor is 200 mm. The reinforcement mesh in the slab is Ø8 mm – 200 mm in both 
directions. The concrete cover is 15 mm. The cross-sections of the square columns are 175 mm × 
175 mm.  
 

 
 
Figure 4.1  Design of a building. (a) side view, (b) plan view. 
 
Parameters: 

 
Concrete strength class : C25/30 
  Material factor : γc = 1.5 
  
Concrete Column : 175 mm × 175 mm 
Concrete slab  
  thickness : 200 mm 
  concrete cover : 15 mm 

 
Additional information  
 

Approximated safe values for β according to the Eurocode: 
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Question 4.1 
 
The punching capacity of the concrete floor close to the exterior column is verified (see fig 4.1 for 
the position of the exterior column). Draw and calculate the control perimeter of the side column. 

Answer 4.1 
 

 
 

1u  is the basic control perimeter and d is the effective slab depth.  

( )
8200 15 181 12 177

8 2200 15 8 173
2

x

x y

y

d mm
d d d mm

d mm

= − − =  → = + =
= − − − =


  

1 2

2 2 177 254
175

d mm
c c mm

= × =
= =

  

1 1 2
2 22 3 2 3 175 2 177 1637 mm

2
du c c c dπ π π× ×

= + + = + × = × + × × =  

Question 4.2 
 
The design load of the column is 150 kN under ULS. Calculate the value of vEd. 

Answer 4.2 
3

1

150 101.4 0.72 MPa
1637 177

Ed
Ed

Vv
u d

β ×
= = × =

×
 

Question 4.3 
 
Calculate vRd,c, (take vmin into account). Does the exterior column punch through the slab? 

Answer 4.3 
 
The punching shear resistance stress of the edge column is: 

1
3

, 10.12 (100 )Rd c ck cpv k f kρ σ= × × +  with a minimum of  3/2
Rd,c min ck 10.035 cpv v k f k σ= = × +   

where cpσ  is the concrete compressive stress in cross section due to axial loading and/or 

prestressing. In this case cpσ =0.  
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Reinforcement mesh  Ø8 mm – 200 mm is applied: 
2 2

21000 8 1000 251.33 /
4 4 200sx sy

dA A mm m
s

π π
= = × = × =   

251.32 0.14%
181 1000

0.14%
251.32 0.15%

173 1000

sx
x

x
x y

sy
y

y

A
d
A
d

ρ

ρ ρ ρ
ρ

= = = ×  → = × =
= = =
× 

  

ck
1
3

,

2001 2,0

2001 2,0 2,0
177

C25 / 30 25 MPa

0.12 2,0 (100 0.14 /100 25) 0.37Rd c

k
d

k k

f

v MPa

= + ≤

= + > → =

→ =

= × × × × =

 

3/2
min 0.035 2 25 0.49v MPa= × =  

{ }, , minmax , 0.49 0.72Rd c Rd c Edv v v MPa v MPa= = < =  →  The exterior column punches through the 

slab.  

Question 4.4 
 
Assumed that the punching shear capacity of the slab is not sufficient, describe the options to increase 
the punching shear capacity. Check whether all the proposed strengthening methods can be applied 
in this building. 

Answer 4.4 
 
In case structural measures should be taken, these can consist of the: 

• application of punching shear reinforcement (hooks, stirrups or dowels). This can be done 
even after the structure is constructed. However, one should check Rd,maxv . Only when Edv  

is smaller than Rd,maxv it is possible. 

 
• increase the thickness of the slab locally by a drop panel or column head. This has to be 

done at the bottom of the slab since the compression zone is at the bottom. u1 (which is a 
function of, amongst other, dH) has to be calculated to determine the size of the head/panel, 
from which the additional height of the panel can be calculated (hH = dH - deff): 

Ed
Ed Rd,c

1 H

Vv v
u d

β= ≤  

 
• other approaches such as an increase of the compressive strength, increase of the 

reinforcement ratio, increase of the column size can only be done before the building is 
constructed.   



 

 32 

Example 5 – Slab and crack width 
 
A continuous one-way spanning slab is considered. The floor is intended to be an office area. The 
slab is supported on 200 mm wide load-bearing block walls at 6000 mm centres, see fig. 5.1.  
 

 
 
Figure 5.1 Side view of a concrete floor. 

Parameters: 
 

Concrete strength class : C20/25 
  weight density concrete : γ = 25 kN/m3 
  mean concrete tensile strength : fctm = 2.2 N/mm2 
  modulus of elasticity : Ecm = 30000 N/mm2 
  Poison’s ratio : v = 0.2 
  
Reinforcement class B500B    : fyd = 435 N/mm2  fyk = 500 N/mm2 
  modulus of elasticity : Es = 200000 N/mm2 
  
Design moment of the critical 
section in the primary load transfer 
direction 

: MEd = 42 kNm/m (ULS) 
  ME,freq = 25 kNm/m (SLS) 

 
Additional information: 

Concrete Cover: 
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Slab thickness estimation: 
 

 
 

 

Scheme l / d (l ≤ 7,0 m) l / d (l ≥ 7,0 m) 

l  
 

slabs simply supported at both sides 
(pinned supports). 

 
 
 

25 
 

 
 

175 / l 

l
 

 
slabs simply supported at one side and 

fixed or continuous at the other side 

 
 

32 

 
 

225 / l 

l
 

 
slabs fixed or continuous at both sides 

 

 
 

35 

 
 

245 / l 
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Bending moment table of beams with different boundary conditions: 
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Question 5.1 
 
Determine the concrete cover of the floor slab. Assume that ∆cdev = 10 mm. The structural class is 
S1. Also estimate the thickness of the floor. 

Answer 5.1 
 
The floor is intended to be the office area (indoor). According to EN 1992-1-1 Table 4.1, the 
corresponding exposure class is XC1.  
The structural class is S1.  
The nominal cover can be determined using the following equation: 

nom min devc c c= + ∆   

min,

min,dur , ,st ,addmin
10 mm

b

min dur dur dur

c
c c c c cγ


= + ∆ − ∆ − ∆



  

where:  
• min,bc  is the minimum cover requirement with regard to bond and should be ≥ Ø (bar diameter, 

or in case of bundled reinforcement, the equivalent diameter) 
• min,durc takes into account the exposure classes and the structural classes, and can be determined 

from EN 1992-1-1, Table 4.4N. For exposure class X1 and structural class S1 cmin,dur  = 10 mm  
• ,durc γ∆ is the additive safety element (the recommended value is 0) 

• ,stdurc∆ is reduction of minimum cover for use of stainless steel (the recommended value is 0) 

• ,adddurc∆ is reduction of minimum cover for use of additional protection (the recommended 

value is 0) 
Therefore, minc = 10 mm, and for the recommended value of devc∆ = 10 mm: 

10 10 20 mmnom min devc c c= + ∆ = + =   

Slab thickness can be estimated from the following table: 
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/ 32l d =   

 
The effective span, leff, of a member can be calculated as follows: 
 

1 2eff nl l a a= + +    
 
where ln is the clear distance between the faces of the supports and a1 and a2 correspond to case 
“(a) non-continuous members” from EN 1992-1-1 fig 5.4: 
 

 
 
Assuming that h t≥ , 200h mm≥  

2 5800 200 6000 mm
2eff n
tl l= + × = + =  

 
/ 32 / 32 6000 / 32 187.5 mm

/ 2
effd l l

h d c Ø
= = = =

= + +
 

 
Assuming that 12 mmØ = : 
 

187.5 20 12 / 2 213.5 220 mmh = + + = ≈  which is in accordance to the intial assumption 
200h mm≥  

 

Scheme l / d (l ≤ 7,0 m) l / d (l ≥ 7,0 m) 

l  
 

slabs simply supported at both sides 
(pinned supports). 

 
 
 

25 
 

 
 

175 / l 

l
 

 
slabs simply supported at one side and 

fixed or continuous at the other side 

 
 

32 

 
 

225 / l 

l
 

 
slabs fixed or continuous at both sides 

 

 
 

35 

 
 

245 / l 
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Question 5.2 
 
Assume that the thickness of the floor is 220 mm. Design the primary reinforcement and the 
secondary reinforcement at the bottom of the floor. Check your design with the minimum 
reinforcement ratio. 
 
Reminder: Use the design moment given in the question properly. The minimum reinforcement 
ratio can be estimated by ρmin = 0,26fctm/fyk, with smax,slab ≤ 450 mm; you may assume that z = 0.9d. 

Answer 5.2 
 
With 220h mm=  and assuming that 12Ø mm=  220 20 12 / 2 194xd mm→ = − − =  

0.9 174.6x xz d mm→ = × =   

In this assignment, the design moment at the critical section in the primary load transfer direction is 
given: MEd = 42 kNm/m (ULS) and ME,freq = 25 kNm/m (SLS).  
 
 
 
 
If it was not given, it would have to be calculated in the following way: 
 
self-weight:  slab 0.22 25ch γ× = ×   = 5.5 kN/m2 

floor finishing:    = 0.4 kN/m2 
 
dead weight:  Gkq    = 5.9  kN/m2 
variable load:  Qkq    = 4.0  kN/m2 
 
ULS:   Ed G Gk Q Qkq q qγ γ= × + ×  1.2 5.9 1.5 4.0= × + ×   213.08 kN/m=  
   
This is one way span, which maximum moment can be calculated by using the strip method. 
Note that the maximum positive bending moment is not at midspan position, but at 3/8l from an end 
support, see figure below (Mspan,max at the position where the shear force V = 0).  

 

 
 

Result: 
2 2

max
3 3 1 3 9( )
8 8 2 8 128

M ql l q l ql= × − =   

2

Ed

9
128

effql
M =  

29 13.08 6
128

× ×
=  33.1 kNm/m=   

 

Additional information 
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The primary reinforcement can be determined as follows: 
, 6 2

,
42 10 553 mm /m

174.6 435
Ed x

s x
x yd

M
A

z f
= = =

×
 

 
For one way slabs, the secondary transverse reinforcement can be determined from the bending 
moment in transverse direction: 
 

, , ,0, 2Ed y Ed x Ed xM M Mν= ≈  (Poisson’s ratio for uncracked concrete is about 0.2). 
 

, 0.2 42 8.4 /Ed yM kNm m≈ × =  
 
Assuming that 12Ø mm= , 194 12 182yd mm= − = → 0.9 163.8y yz d mm= × =  

, 6 2
,

8.4 10 117.9 /
163.8 435

Ed y
s y

y yd

M
A mm m

z f
= = =

× ×
 

 
For the primary reinforcement: 
 

2
, ,min , 553 mm /ms x s s xA A A> → =  

,
2

1000
4x

s x

Ø

s A
π

≤
×   

With 12Ø mm=

2

12 200

12

1000 204.54 553xs mm Ø mm

π

→ ≤ = −→
×    (

2
21000 565.5 /

4sA mm m
s

Ø π
= × = ) 

 
For the secondary transverse reinforcement:  

2
, 118 mm /ms yA→ =   

With 12Ø mm=

2

1000 960 mm4 11
12

8xs

π

→ ≤ =
×

  

Since max, 450slabs mm≤ 12 450Ø mm−→ (
2

21000 251 mm /m
4s

ØA
s

π
= × = ) 

Or with 8Ø mm=

2

1000 426 mm4 118 8 425 mm

8

xs Ø

π

−→ ≤ = →
×

  (
2

21000 118 mm /m
4s

ØA
s

π
= × = ) 

 
Question 5.3 
 
The crack width has to be evaluated at the bottom surface of the floor. Estimate the effective depth 
of the equivalent tensile member. (Assuming a reinforcement design of Ø12 – 200 mm in the 
primary direction). 
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c,eff

2,5 ( )
min

( ) / 3
h d

h
h x

− 
=  − 

  

where x is the height of the concrete compression zone.  
 

Answer 5.3 
 
Calculate the concrete compression zone height in the cracked stage: 

2( ) 2e e e
x
d

α ρ α ρ α ρ= − + +   

 
where  

200000 6.67
30000

s
e

c

E
E

α = = =   

2 21 11000 / 12 1000 / 200
4 4 0,29%

1000 194
s

Ø s

bd
A
bd

π π
ρ

⋅ ⋅
= =

⋅
=

⋅ ⋅
=   

 
26,67 0,003 (6,67 0,0029) 2 6,67 0,0029 0,179x

d
= − ⋅ + ⋅ + ⋅ ⋅ =  

 
The height of the compression zone is: 
 

0,179 194 34,7 mmx = ⋅ =   

c,eff

2,5 ( ) 2,5 (220 194) 65
min min min 61.8 mm

( ) / 3 (220 34.7) / 3 61.8
h d

h
h x

− ⋅ −     
= = = =     − −     

 

 
Question 5.4 
 
Determine the maximum crack width of the floor (long term loading; do not take into account 
shrinkage). Use the tensile member model. 
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Crack width control: 
 

 

( )ctm
max s sr

bm s,eff s

crack
sr

s

1 Ø 1
2

fw
E

M
zA

σ α σ
τ ρ

σ

= −

=

 

 

 
 

Answer 5.4 
 
First, it is important to determine whether cracking occurs when the SLS load ME,freq = 25 kNm/m 
is applied and, if so, what the cracking stage is (either crack formation stage or stabilized cracking 
stage). 
 
The cracking bending moment of the slab is (calculated based on the flexural tensile strength): 

,cr ctm flM W f= ×  

 
where fctm,fl is the flexural tensile strength: 

 

ctm,fl ctm(1,6 /1000) (1,6 220 /1000) 2,2 3,04 MPaf h f= − = − ⋅ =   
2 2

cr ctm,fl ctm,fl E,freq
1000 220 3,04 24,49 kNm/m 25 /

6 6
bhM W f f M kNm m⋅

= × = × = ⋅ = < =  

 
Result: 
The member cracks at SLS. Furthermore, when the SLS load is applied, the member is in the 
stabilized cracking stage. 
 
Maximum crack width is calculated as follows (tensile member model): 

ctm
max s sr

bm s

1 1 ( E )
2 sc s

fw
E

Ø σ ασ βε
τ ρ

= − +   

 
where σsr is the steel stress directly after cracking, σs is the steel stress at SLS and α and β can be 
determined using the following table: 
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σsr is the steel stress directly after cracking: 
 

crack
sr

s

M
A z

σ =  

 
34.7192 182.4

3 3
xz d mm= − = − =   

6

sr
24,49 10 237

565.5 182.4
MPaσ ×

= =
×

 

 
Steel stress in a crack at SLS (cracked cross-section loaded in pure bending): 
 

E,freq
s

s

M
A z

σ =
×

 

 
Note that here, z is not the same as in Question 5.2 where the ULS was investigated and where it 
was stated that it was allowed to assume that 0.9z d= . Now, the member is at the SLS. Therefore: 
 

34.7192 182.4
3 3
xz d mm= − = − =   

6

s
25 10 242

565.5 182.4
MPaσ ×

= =
×

 

 
According to table 15,III 0.3α→ =  and asuming 0scε = and bm ctm2 fτ =  
 
Finally, maximum crack width in the stabilized crack stage can be calculated as follows: 
 

max 3

1 1 1 (242 0,3 237) 0,28 mm
2 2 0,0091 200 10

12w = ⋅ ⋅ ⋅ ⋅ − ⋅ =
×
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Example 6 – Slab and punching shear resistance 
 
Consider the following two-way slab, simply supported at four edges as rigid line supports (no 
rotational fixity) and a column in the centre.  

   
Figure 6.1 Top view of the slab 
 
Parameters: 

 
Concrete strength class : C30/35 
Floor thickness : h = 180 mm 
Column size : 200 × 200 mm2 
Concrete cover : c = 20 mm 
Rebar configurations : ρlx = 0.26%, ρly = 0.24%, with Ø12 rebars in 

both directions 
Design value of the punching shear 
force  

 
: VEd = 150 kN 
 

 
Additional information  
 
Approximated safe values for β according to the Eurocode: 
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Question 6.1 
 
Estimate the force that is carried by the column with the strip method. There is a uniformly 
distributed load q on the slab, thus the value of the force is in terms of q. 
 
Hint: You may assume that the width of the column strip is 1/4l, or simply choose a load carrying 
mechanism which you think is appropriate. Figure 6.2 is only an addition to the following formulae 
table. 

  
Figure 2.2 A complimentary formula for a shear force calculation. 
 
Bending moment and shear force table of beams with different boundary conditions: 

 

Answer 6.1 
 
Take a quarter of the slab. Sub-dividing this part of the slab into strips could result in the following 
sketch:  
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The horizontal half column strip is now considered.  
 
 
 
Boundary conditions: 

At the left, there is a rigid line support without rotational fixity. The result is a vertical support 
only. 
At the right, symmetry makes that the column strip can’t rotate. Therefore, there’s a fixed end. 

 
The column strip functions both as a part of the slab and as a beam (it carries part of the load from 
the middle strip and it carries its own load part too). 
 
In the left hand side part of the middle strip, 50% of the load is transferred in horizontal direction; 
50% in vertical direction. The result is 4 times q/4 transferred. Two times q/4 is transferred to the 
line supports; two times q/4 is transferred to the two half column strips (q/4 to the horizontal half 
column strip; q/4 to the vertical half column strip; 
 
First consider loads transferred in → direction. There is q/2 (→) at the right hand side, directly 
loading the strip (over half column strip width): 
 

 
 
Now, loads transferred in ↓ direction are considered. There is q/2 from the middle strip (width 3/4l). 
Half of this load is being transferred to the edge rigid line support and half to the half column strip. 
This load acts over a 3/4l part (length) of the half column strip. Moreover, there is q from the half 
column strip itself (width 1/4l). This load also acts over a 3/4l (length) part of the half column strip. 
Finally, there’s q/2 from the half column strip itself (width 1/4l). This load acts over a 1/4l (length) 
part of the half column strip. The result is: 
 

 
  

“Middle” strip 

Half column strip 

1 3 7

2 2 4 4 16

q l l
q ql⋅ ⋅ + =  
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The total load on the half column strip is: 
 
 

 
 
To be able to use this in the equation in figure 6.2, the load is presented as: 
 

1
1
4Q ql=  and 2 1

7 3
16 16Q ql Q ql= − =  

 

 
 
 
 
 
 
 
Use the equation given in figure 6.2: 
 

33 1
4 8

a aV Qa
l l

  = −  
   

 

 
The support reaction at the column edge becomes: 
 

For load 1Q →  2
1 1

3 1 1 5 5
4 8 4 8 32V Q l ql l ql 

 
 

= − = =      ( )a l=  

For load 2Q →  
3

2
1 2

3 3 3 1 3 3 3 261 0.0724 4 4 8 4 16 4 512V Q l ql l ql
       

= ⋅ − ⋅ = =   3( )
4

a l=  

 
The total force carried by the column is (l = 4 m) (8 half column strips; 4 in both horizontal and 
vertical direction, see following figure): 
 

( ) 2
1 28 8 0.23 29.2V V V ql q== + = ⋅ ⋅       ( 4 )l m=  

( 29.2 0.46
64

q
q

≈ →  this is around 46% of the total vertical force carried by the structure) 

  

7

16
ql  

1 1
2

8 4
ql ql⋅ =  

2

1

3
16
1
4

Q ql

Q ql

=

=
 

3
4

a l=  

a l=  

V1 + V2 
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Question 6.2 
 
Assume that the design value of the total force transferred to the column (result from Question 6.1) 
is VEd = 150 kN. Check the punching shear capacity of the floor around the column with the 
provided information. 
 
Answer 6.2 
 
For a rectangular cross-section of a column the size of the basic control perimeter is: 
 

1 1 22( ) 2 2u c c d π= + + ⋅  

 
 

where d is the effective slab depth.  

( )
12180 20 154 1 1482

2154 12 142

x
x y

y

d mm
d d d mm

d mm

= − − =  → = + =
= − = 

  

 
The length of the basic control perimeter is: 
 

1 4 200 4 148 2659.82mmu π× + × × ==  

According to Eurocode, the load eccentricity factor for inner columns is 1.15β = , so the design 
shear stress is: 

3

1

1501.15 10 0.44
2659.82 148

Ed
Ed

Vv MPa
u d

β= = × × =
× ×

 

 
 
 

  calculated strip 
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The punching shear resistance stress of the slab is: 
1
3

, 10.12 (100 )Rd c ck cpv k f kρ σ= × × +  with a minimum of 3/2
Rd,c min ck 10.035 cpv v k f k σ= = × +   

where cpσ  is the concrete compressive stress in cross section due to axial loading and/or 

prestressing. In this case cpσ =0.  

 
According to the provided information: 

0.26%
0.25%

0.24%
x

x y
y

ρ
ρ ρ ρ

ρ
= 

→ = × == 
  

ck
1
3

,

2001 2,0

2001 2,0 2,0
148

C30 / 35 30 MPa

0.12 2 (100 0.25 /100 30) 0.47Rd c

k
d

k k

f

v MPa

= + ≤

= + > → =

→ =

= × × × × =

 

3/2
min 0.035 2 30 0.54v MPa= × =  

{ }, , minmax , 0.54 0.44Rd c Rd c Edv v v MPa v MPa= = > = →  The column will not punch through the 
slab so the slab is safe for punching shear 
failure. 
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Example 7 – Slab and crack width 
 
The ceiling of a cut-and-cover tunnel segment is considered. The cross section of the tunnel is 
given in Figure 7.1.The ceiling is a reinforced concrete slab with a thickness of 600 mm. One may 
assume the clear span of the ceiling slab is 10 m. All the joints between the walls and the slabs are 
assumed to be hinges. 

 
 

Figure 7.1. Cross section of the cut-and-cover tunnel segment. (unit [m]) 

Parameters: 
 

Concrete strength class : C40/50 
  density of concrete : γc = 25 kN/m3 
  mean concrete tensile strength : fctm = 3.5 N/mm2 
  modulus of elasticity : Ecm = 35000 N/mm2 
  Poison’s ratio : v = 0.2 
  Slab thickness : 600 mm 
  Concrete cover : c = 30 mm 
  
Reinforcement class B500B    : fyd = 435 N/mm2  fyk = 500 N/mm2 
  modulus of elasticity : Es = 200000 N/mm2 
  
Soil density : γsoil = 20 kN/m3 
Depth of soil cover : 1500 mm 
Traffic load on the ground : 5 kN/m2 
  
Quasi-permanent combination (SLS) : 𝜓𝜓2 = 0.5 for live load 
Partial load factors (ULS) : 𝛾𝛾𝐺𝐺 = 1.35  

  𝛾𝛾𝑄𝑄 = 1.50 
Question 7.1 
 
Determine the design hogging moment at the intermediate support of the tunnel ceiling slab at the 
ULS. Consider the following actions: traffic load, soil weight, self-weight of the structure. The 
simplified diagram from Figure 7.2 can be used. 
 

 

Figure 7.2. Simplified static scheme of the ceiling slab. 
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Answer 7.1 
 
self-weight:  slab 0.6 25ch γ× = ×   = 15.0 kN/m2 

soil weight:  soil 1.5 20sh γ× = ×   = 30.0 kN/m2 

 
dead weight:  Gkq    = 45.0  kN/m2 
variable load:  Qkq    = 5.0  kN/m2 
 
ULS:   Ed G Gk Q Qkq q qγ γ= × + ×  1.35 45 1.5 5.0= × + ×   268.25 kN/m=  
     
The hogging moment at the intermediate support of the tunnel ceiling slab at ULS can be 
determined by using the following system: 
 

 
 

2 268.25 10 853.13 kNm/m
8 8

Ed
Ed

q lM ×
= = =   

 
Question 7.2 
 
Determine the design moment at the SLS. And check if the slab cracks or not at the intermediate 
support at the SLS.  
 
Hint: You may use fctm instead of the flexural tensile strength fctm,fl. 
 
Answer 7.2 
 
SLS:  2Gk Qkq q qψ= + ×   45 0.5 5= + ×   247.5 kN/m=  

2 247.5 10 593.75 /
8 8

qlM kNm m×
= = =  

The flexural tensile strength is: 
 

ctm,fl ctm(1,6 /1000) (1,6 600 /1000) 3.5 3.5MPaf h f= − = − ⋅ =  (or fctm,fl = fctm, as given by hint) 

 
The cracking bending moment of the slab is: 
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2 2

6
cr ctm,fl

1000 600 3,5 210 10 Nmm/m 210 kNm/m 593.75 kNm/m
6 6

bhM f M⋅
= = ⋅ = ⋅ = < =   

At the SLS the slab at the intermediate support is cracked. 
 
Question 7.3 
 
Calculate the maximum crack width (long term loading) of the slab if it cracks. The structural 
engineer decides to apply Ø25 – 125 mm reinforcement in the top layer of the governing cross-
section. 
 
Hint: You may assume that the height of the concrete compressive zone x = 0,25d.  
 
Crack width control: 
 

 

( )ctm
max s sr

bm s,eff s

sr
s

sr

1 Ø 1
2

Member loaded in bending:
follows from the cracking
bending moment

crack

fw
E

M
zA

σ α σ
τ ρ

σ

σ

= −

=  

 

 
 

 

c,eff

2,5 ( )
min

( ) / 3
h d

h
h x

− 
=  − 

 where d is the effective depth and x is the height of the compressive zone 

 
Answer 7.3 
 
Maximum crack width is calculated as follows (tensile member model): 

ctm
max s sr

bm , s

1 1 ( E )
2 sc s

s eff

fw
E

Ø σ ασ βε
τ ρ

= − +   
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where σsr is the steel stress directly after cracking, σs is the steel stress at SLS and α and β 
follow from the table. 

 

where s
s,eff

c,eff

A
bh

ρ =   

and hc,eff is the depth of effective tensile area around the tensile reinforcement and can be 
calculated as follows (EN 1992-1-1, Section 7.3.2): 

c,eff

2,5 ( )
min

( ) / 3
h d

h
h x

− 
=  − 

  

where d is the effective depth and x is the height of the compressive zone 
600 30 25 / 2 557.5 mmd = − − =  

 
0.25 0.25 557.5 139.4 mmx d= = × =  (see the hint) 

 

c,eff

2.5 ( ) 2.5 (600 575.5) 106.2
min min min 106.2 mm

( ) / 3 (600 139.3) / 3 153.5
h d

h
h x

− ⋅ −     
= = = =     − −     

 

 
2

2 21 1000 25 1000 3927 /
4 4 150sA Ø mm m

s
ππ= ⋅ = =  

 
s

s,eff
c,eff

3927 3.7%
1000 106.2

A
bh

ρ = = =
⋅

 

 
σsr is the steel stress directly after cracking: 
 

sr
s

crM
A z

σ =  where 139.4557.5 511
3 3
xz d mm= − = − =   

6

sr
210 10 105

511 3927
MPaσ ×

= =
×
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Steel stress in a crack at SLS (cracked cross-section loaded in pure bending): 
 

s
s

M
A z

σ =
×

 where 139.4557.5 511
3 3
xz d mm= − = − =   

6

s
593.75 10 296
511 3927

MPaσ ×
= =

×
 

 
According ot table 15,III 0.3α→ =  and asuming 0scε = and 2bm ctmfτ = , the maximum crack 
width in the stabilized crack stage can be calculated as follows: 

max
1 1 25 1 (296 0.3 105) 0,22mm
2 2 0.037 200000

w = ⋅ ⋅ ⋅ − ⋅ =  

Question 7.4 
 
Since the tunnel is covered by soil, the pressure of soil and water at the side surfaces of the tunnel 
has to be taken into account. An illustration of the pressures acting on the side surfaces of the 
tunnel is given in figure 7.3. Taking the information from this picture into account, check whether 
the ceiling slab cracks or not. 

 
 
In case the hint was not given, the height of the compression zone could be calculated as 
follows: 

2( ) 2e e e
x
d

α ρ α ρ α ρ= − + +   

where  
200000 5.71
35000

s
e

c

E
E

α = = =   

2 21 11000 / 25 1000 /125
4 4 0,7%

1000 557.5
s

Ø s

bd
A
bd

π π
ρ

⋅ ⋅ ⋅ ⋅
= =

⋅
= =   

25.71 0.007 (5.71 0.007) 2 5.71 0.007 0.25x
d

= − ⋅ + ⋅ + ⋅ ⋅ =  

The height of the compression zone is: 0,25 575.5 139.4 mmx = ⋅ =   

 

Additional information 
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Figure 7.3.  Indication of the soil and water pressure acting at the side surfaces of the tunnel 

segment. 

Answer 7.4 
 

 
Reaction force (in the ceiling slab) due to pressure of soil and water can be calculated as follows: 

1
22.5 7 105 7 1 201.5 kN/m

2 2 3
R × ×

= + × =   

 
In-plane compressive stress in the ceiling slab caused by the pressure of soil and water: 

201.5 1000 0.33
1000 600p

R MPa
h b

σ = = × =
× ×   

 
This stress acts as prestressing in the slab (increasing the cracking bending moment of the slab):  

2 2

cr ctm,fl
1000 600( ) (3,5 0.33) 229.8kNm/m 593.75 kNm/m

6 6p
bhM f Mσ ⋅

= + = ⋅ + = < =
 

 
Still, the slab will be cracked at the SLS load. Note that for the cracking moment, the flexural 
tensile strength is used. 
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Example 8 – Slab and punching shear resistance 
 
Consider the floor plan of a two-way flat slab indicated in Figure 8.1. 
 

 
 

Figure 8.1 Top view of a flat slab floor plan  

Parameters: 
 

Concrete strength class : C30/35 
Floor thickness : h = 180 mm 
Concrete cover : c = 20 mm 
Rebar configurations : ρlx = 0.26%, ρly = 0.24%, with Ø12 rebars in 

both directions 
Design value of the punching shear 
force  

 
: VEd = 250 kN 
 

Column diameter : 200 mm 

Additional information  
 
Approximated safe values for β according to the Eurocode: 
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Question 8.1 
 
Strip method 
Assume that the dead load qG and the live load qQ are applied over the full floor plan area (all the 
slab spans). Consider the loading condition for the bottom reinforcement. Draw the boundary 
conditions and load distributions of the Middle – Strip in the x direction. 
 

Hint: you DON’T need to calculate the moment distribution. 
 
Answer 8.1 
 
Dead load and live load are applied to the whole floor plan. 
 

 
 
 
The boundary conditions of the middle strip are shown in the following figure. Loading symmetry 
makes that the single slab span can be assumed to have no rotational flexibility at both its ends. 
The load transferred by the middle strip in x-direction is q/2 over 5 m and q at both its ends (2,5 m 
each). The total line load on the middle strip is the load q multiplied with the middle strip width 
(4 m). 
                   4 Edq  
 
       
 
 
where 

1.2 1.5Ed G G Q Q G Qq q q q qγ γ= × + × = × + ×  
 
Question 8.2 
 
Assume that the dead load qG is applied to the whole floor plan (all the slab spans), but the live 
load qQ is only applied on a single slab span. Considering the loading condition for the bottom 
reinforcement, draw the boundary conditions and load distributions of the Middle – Strip in the x 
direction. Compare the results of 8.1 and 8.2, and give your opinion on which one is more critical 
for the design of the bottom reinforcement. 
 
 
 
 
 
 

 8/4=2 m         Half column strip 

  8/2=4 m          Middle strip 

8/4=2 m          Half column strip 

10/4=2.5 m          5 m           2.5 m 

Edq  

Edq  

Edq  Edq  / 2Edq  

4 Edq  4 / 2 2Ed Edq q=  

     2.5 m             5 m            2.5 m 
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Answer 8.2 
 
 
 

Gγ ×        1.2Gγ =   
 
 
     + 
 
 

Qγ ×       1.5Qγ =  
 
 
 
The G load transfer and scheme have already been presented in Answer 8.1. The Q load now is 
present over one span only. It is now almost as if the slab can freely rotate at a support. Therefore, 
the strip scheme is now as if it is a simply supported element. 
 
For the design of the bottom reinforcement, more critical is the result from 8.2b because it causes a 
higher sagging moment (smaller negative support bending moments). However, for the design of 
the top reinforcement, more critical is the result from 8.2a as it causes higher hogging moments. 
 

4 Gq  4 Gq  
4 / 2 2G Gq q=  

     2.5 m             5 m            2.5 m 

4 / 2 2Q Qq q=  

     2.5 m             5 m            2.5 m 

4 Qq  4 Qq  

MG 

MQ 
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Why the different boundary conditions are valid for the two situations (permanent, G and 
variable, Q load) in answer 8.2? 
 
Maximum negative bending moment: 
In order to get the largest hogging moment (zone marked red), the load distribution can be 
presented as follows. In this image, the variable load is marked as the “p” load. 
 

 
 

The following boundary conditions are then valid for both the permanent and the variable 
load and they should be used for determining the largest hogging moment: 
 

 
 
Maximum positive bending moment: 
In order to get the largest sagging moment (zone marked red), the load distribution can be 
divided as follows: 
 

 
 

The following boundary conditions are now valid for the right hand side P/2 variable load 
parts, which should be used for determining the largest sagging moment (and design of the 
bottom reinforcement):  
 

 
 
 

 
 
 
 

Additional information 
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Question 8.3 
 
The punching shear capacity of a floor is considered. Assume that the design force in columns is 
VEd = 250 kN. The engineer found that the punching shear capacity of the floor is not sufficient. 
Therefore it was suggested to apply a circular drop panel under the floor. The thickness of the drop 
panel ensures that the punching shear capacity of the drop panel itself is sufficient. The dimension 
of the panel lH indicated in Figure 2.2 has to be determined. Please calculate the value of lH for the 
engineer. 
 

 
 

Figure 8.2. Side and bottom view of the drop panel. 

Answer 8.3 
 
For a circular cross-section of a column the size of the basic control perimeter is: 
 

1 )(2(2 200)Hu d l π= + +  
 
 
 

 
 
 
where d is the effective slab depth.  

( )
12180 20 154 1 1482

2154 12 142

x
x y

y

d mm
d d d mm

d mm

= − − =  → = + =
= − = 

  

 
The length of the basic control perimeter is: 
 

u1 

2d 
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1 (4 148 2 200) (792 2 )H Hu l lπ π= × + + = +  

According to the Eurocode, the eccentricity factor for inner columns is 1.15β = , so the design 
shear stress is: 

3

1

2501.15 10
(792 2 ) 148

Ed
Ed

H

Vv
u d l

β
π

= = × ×
× + ×

 

 
The punching shear resistance stress of the column is: 

1
3

, 10.12 (100 )Rd c ck cpv k f kρ σ= × × +  with a minimum of 3/2
Rd,c min ck 10.035 cpv v k f k σ= = × +   

where cpσ  is the concrete compressive stress in a cross section from axial loading and/or 

prestressing. In this case cpσ =0.  

 
According to the provided information: 

0.26%
0.25%

0.24%
x

x y
y

ρ
ρ ρ ρ

ρ
= 

→ = × == 
  

ck
1
3

,

2001 2,0

2001 2,0 2,0
148

C30 / 35 30 MPa

0.12 2,0 (100 0.25 /100 30) 0.47Rd c

k
d

k k

f

v MPa

= + ≤

= + > → =

→ =

= × × × × =

 

3/2
min 0.035 2 30 0.54v MPa= × =  

{ } 3
, , min

250max , 0.54 1.15 10
(792 2 ) 148Rd c Rd c Ed

H

v v v MPa v
l π

→ = = > = × ×
+ ×

 

31.15 250 10 792
0.54 148 177 mm

2Hl π
× ×

−
× ×> =   
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Example 9 – Reservoir and crack width 
 
A water tank has a foundation slab and a circular reinforced concrete tank wall, see Figure 9.1. The 
wall thickness is 200 mm. The inner diameter of the wall is 20 meters; the wall height is 12 meters. 
There is a sliding connection - without friction - between the tank wall and the foundation slab.  
 

 
Figure 9.1  Cross-section of the water tank   

 
Concrete strength class  : C25/30 
Density concrete   : ρ = 25 kN/m3 
Reinforcement class B500B     : fyd = 435 N/mm2  
Modulus of elasticity   : Es = 200000 N/mm2 
Concrete wall   
  thickness     : 200 mm 
  concrete cover    : 25 mm 
  allowable crack width  : 0,20 mm 
       : hc.eff = 2,5 (h - d) 
  mean concrete tensile strength:  fctm = 2,6 N/mm2 

  bond strength    : τbm = 2 fctm 
Concrete modulus of elasticity : Ecm = 31000 N/mm2 
Partial load factors   : γG   = 1,2   

: γQ   = 1,5 
  

Question 9.1  
 
Calculate the maximum design force (NEd) in the tank wall given that the tank is completely filled 
with water.  

Answer 9.1 
 
Hoop force (ring force) from the hydrostatic water pressure:  N = qR. 
Maximum design hoop force is at the bottom:    NEd,max = γQ h ρwater R. 
 
NEd,max = 1,5·12·10·10 = 1800 kN/m 
 

Question 9.2  
 
Calculate the required amount of reinforcement in the tank wall in mm2 per 1 meter of height, 
assuming that the maximum tensile force is constant over this 1 meter. 
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Answer 9.2 
 
It is an ULS check. Therefore, use fyd. 
 

3
Ed,max 2

s
yd

1800 10 4138 mm /m
435

N
A

f
⋅

= = =  

 

Question 9.3  
 
Design the required reinforcement by choosing a bar diameter and a number of bars per meter. 
 

Answer 9.3  
 

Apply bars Ø16: s
s

2

4138 21 / m1 20116
4

An
π

= = =
⋅

 

At each of both sides (inside & outside): 21/2 = 10,5 bars/m = Ø16 spaced 1000/10,5 = Ø16-95. 
 

Question 9.4  
 
Calculate crack width wmax and check whether the calculated crack width is smaller than 0,20 mm.  
Hint: calculate ρs,eff . 
 
Crack width control: 
 

 

( )ctm
max s sr

bm s,eff s

sr

1 Ø 1
2

crack

s

fw
E

N
A

σ α σ
τ ρ

σ

= −

=

 

 

 
 
Answer 9.4  
 
Concrete cover = 25 mm 
h - d = 25 + Ø/2 = 25 + 16/2 = 33 mm 
hc.eff = 2,5 (h - d) = 83 mm 
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Bars: Ø16-95   →  

2

s,eff

1 16
4 0,0255
95 83

π
ρ

⋅
= =

⋅
 

 
Hoop force (ring force) from the hydrostatic water pressure:  N = qR. 
SLS check: Maximum hoop force is at the bottom:    NE,max = h ρwater R. 
 
NE,max = 12·10·10 = 1200 kN/m 
 

Steel stress in SLS: 
3

E,max 2
s,max

2s

1200 10 284 N/mm1 16 21
4

N
A

σ
π

⋅
= = =

⋅ ⋅
 

Note: This result is as expected. It’s SLS, so no load factor applied. ULS steel stress 435 N/mm2 now 
is 435/1,5 = 290 N/mm2 ≈ 284 N/mm2 (As,applied ≈ As,required in ULS). 
 
Steel stress directly after cracking: 
 

21 16
4 0,0212

95 (200 / 2)

π
ρ

⋅
= =

⋅
 

 

2s
sr ctm

c

1 200 11 2,6 1 0,0212 139 N/mm
31 0,0212

Ef
E

σ ρ
ρ

   = + = ⋅ + ⋅ ⋅ =   
  

 

 
Maximum crack width: 
 
Assume long term loading: 
 

( ) ( )ctm
max s sr 3

bm s,eff s

1 Ø 1 1 2,6 16 1 284 0,3 139 0,19 mm
2 2 2 2,6 0,0255 200 10

fw
E

σ α σ
τ ρ

= − = ⋅ ⋅ ⋅ ⋅ − ⋅ =
⋅ ⋅  

Smaller than 0,2 mm; OK. 
 

Question 9.5  
 
Is the calculated crack width related to the phase “fully developed crack pattern” or not? 
 

Answer 9.5 
 
NE,max = 12·10·10 = 1200 kN/m 
 
Concrete tensile stress assuming that the concrete is uncracked in SLS: 
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3
E,max 2

c,max
1200 10 6,0 N/mm
1000 200c

N
A

σ ⋅
= = =

⋅
>> σcr 

 
Fully developed crack pattern (or: stabilized cracking stage) since NE > Ncrack. 
 

Question 9.6  
 
It is now assumed that the tank is filled with water. At which water level (height in meters) will the 
first crack in the wall occur? 
 
Answer 9.6  
 
SLS check:  
Maximum hoop force is at the bottom:  NE,max = hwater ρwater R. 
 

NE,max = hwater 10·10 = 100 hwater [units kN & m] 
 

6 3
E,max 2water

c cr
100 10 10 2,6 N/mm

1 200
5200 mm

c

water

N h
a

h

σ σ
−⋅ ⋅

= → = =
⋅

→ =

[units N & mm] 

 
This result also follows directly from: (2,6 N/mm2 / 6,0 N/mm2)·12 m = 5,2 m. 
 
When also taking into account the impact of the reinforcement on the cracking force: 
 

crackN  

2

s
c ctm

c

12 16200 41 200 1 2,6 1
31 200 95

EA f
E

π
ρ

 ⋅ ⋅  
= + = ⋅ ⋅ ⋅ + ⋅ =   ⋅   

 

 

( )200 1 2,6 1 0,137 591 N/mm= ⋅ ⋅ ⋅ + =  
 
bottom: NE,max = hwater ρwater R. 
 
hwater = 591/(10·10-6·10·103) = 5910 mm [units N & mm] 
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Example 10 – Prestressed concrete 
 
A post-tensioned beam has a 35 m span, see figure 10.1. The beam has a rectangular cross-section; 
width b = 0,75 m and height h = 1,8 m. The beam is prestressed using curved tendons (strands in 
ducts). The fictitious tendon profile consists of two parabolas, namely parabola 1 with a radius of 
curvature R1 = 62 m over ℓ1 = 10 m and parabola 2 with R2 = 330 m over ℓ2 = 25 m  
 
The bottom of both parabolas is at position A (they joint at this position) in Figure 3.1, which is at 
ℓ1 = 10 m from the left support. The bottom of the parabolas is at 0,2 m from the bottom fiber of the 
beam. 
 

 
 
Figure 10.1  Side view of the girder including fictitious tendon profile (not to scale).  
 
Parameters: 
 
Density concrete    : ρ = 25 kN/m3 

Variable load      : qQk = 10 kN/m 
 
Strength class of concrete   : C50/60 
 
Strength class of prestressing steel  : Y1860S7  
Elastic modulus prestressing steel  : Ep = 195000 N/mm2  
 
Question 10.1  
 
Calculate the tendon eccentricities relative to the centroidal axis at the two anchors.  
 
Answer 10.1 
 

Parabola: 
2

2
xy
R

=  

ℓ1 = 10 m: 
2

1
10 0,806 m
2 62

y = =
⋅

  => 806 + 200 - 900 = 106 mm 

ℓ2 = 25 m: 
2

2
25 0,947 m

2 330
y = =

⋅
  =>947 + 200 - 900 = 247 mm 

 
Question 10.2  
 
Show in a figure all the loads on the beam from a prestressing force P, assuming that there is no 
friction and no wedge set. 

centroidal axis 

A 
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Answer 10.2 
 

 
 

 
 
Question 10.3  
 
Calculate and draw the bending moment diagram resulting from a prestressing force P. Assume that 
there is no friction and no wedge set.  
 
Answer 10.3 
 
1: From anchor eccentricities: 
 

 
 
2: Uniformly distributed load 
 

 
 
3: q1 > q2; contribution left after applying q2: 
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Total = 1 + 2 + 3: 
 
Midspan (units: mm): 
 

( )

( )

( )

1
21 2

2 1 2 1

3
23 3 3

3 3 3 3

1
1 12

2 8 2

1 10 10106 247 1 1235 10 10 10 35 10
2 8 330 10 62 10 330 10 35 10 2

176,5 464,0 327,5 615

le eM P q l q q l l
l

P P PM P

M P P

 
 + = − − −   

   
 

 ⋅ ⋅ +   = − ⋅ ⋅ − − ⋅ ⋅ ⋅ ⋅ ⋅    ⋅ ⋅ ⋅ ⋅     
 

= − − = −

 

 
Additional info: 
 
Calculate M at l1: 
 

( ) ( ) ( )

( )

( )

( )

1
1

1 1 2 2 1 1 2 1 2 1

3 3 3
3

3

3 3
3 3 3

1
1 2
2

10106 106 247
35

1 10 10 35 10 10 10
2 330 10

1 10 10
225 10 10 10

62 10 330 10 35 10

146,3 378,8 467,8 700

llM P e e e q l l l l q q l
l l

M P

P

P P

M P

 
  = − − − − − −   

   
 

 = − ⋅ − 
 

− ⋅ ⋅ ⋅ − ⋅
⋅

 ⋅ ⋅  − ⋅ ⋅ − ⋅ ⋅ ⋅  ⋅ ⋅ ⋅   
 

= − − = − P

 

 
unit [mm] 
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 unit [m] 
 
Check: 
 

Midspan tendon eccentricity = 
( )217,5 10

0,7 0,7 0,085 0,616 m
2 330

−
= − = − =

⋅
 

 
Effective height: dp = 1800/2 + 615 = 1515 mm 
 
Question 10.4  
 
Calculate the maximum initial prestressing force Pm0 [kN] allowed to have no tension in the 
midspan cross-section when stressing the tendons.  
 
Answer 10.4 
 
G = 0,75·1,8·25 = 33,75 kN/m 
MG = Gl2/8 = 5168 kNm 
 
Check top fiber level. 
 
Units [kN, m]: 
 

2 2

0,615 5168 01 10,75 1,8 0,75 1,8 0,75 1,8
6 6

16406 kN

P P

P

− + − ≤
⋅ ⋅ ⋅ ⋅ ⋅

≤

 

 
Question 10.5  
 
Calculate the minimum working prestressing force Pm∞ [kN] required to have no tension in the 
midspan cross-section, at maximum SLS load.  
 
Answer 10.5 
 
G + Q = (33,75 + 10) kN/m 
MG+Q = (G+Q)l2/8 = 6700 kNm 
 
Check bottom fiber level. 
 
Units [kN, m]: 
 

2 2

0,615 6700 01 10,75 1,8 0,75 1,8 0,75 1,8
6 6

7322 kN

P P

P

− − + ≤
⋅ ⋅ ⋅ ⋅ ⋅

≥

 

at l1 

-0,615P at midspan 
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Question 10.6  
 
The tendons are stressed from the left hand side support. Sketch the profile of the prestressing force 
Pm,x/Pm,x=0 at t = 0 over the full length of the beam. Mark important points/values. Assume that the 
friction coefficient μ = 0,20 and the wobble factor k = 0,01 rad/m.  
 
Prestressing force including frictional loss: 

( ) ( ) ( )kxexPxP +−⋅== θµ0mm  
 
friction coefficient      μ = 0,2 
wobble factor              k = 0,01 rad/m 
 
Answer 10.6 
 

Use x
R

θ ∆
∆ =  

 
x = l1 = 10 m: 
 

( ) ( ) ( ) ( ) ( )
100,2 10 0,01
62

m m m m10 0 0 0,949 0kxP x P x e P x e P xµ θ
 − ⋅ + ⋅ − +  = = = ⋅ = = ⋅ = =  

 
x = l = 35 m: 
 

( ) ( ) ( ) ( ) ( )
10 250,2 35 0,01
62 330

m m m m35 0 0 0,889 0kxP x P x e P x e P xµ θ
 − ⋅ + + ⋅ − +  = = = ⋅ = = ⋅ = =  

 

 
 
Question 10.7  
The tendons are assumed to be stressed to a stress σp,max = 1395 N/mm2. Wedge set is wset = 3 mm. 
Calculate the wedge set influence length and sketch the profile of the prestressing steel stress 
immediately after anchoring. Use the results from question 10.6f. 
 
Influence length of wedge set: 
 

x

Ew
l

∆
∆

=
μp,

pset
set σ  

 



 

 69 

Answer 10.7 
 
Units: N & mm: 
 

( ) 3 3p,μ
3

1 0,949 1395
7,11 10 N/mm

10 10x
σ −− ⋅∆

= = ⋅∆ ⋅
 

 

set p
set 3

p,μ

3 195000 9068 mm
7,11 10

w E
l

x
σ −

⋅
= = =

∆ ⋅
∆

 

 

 
 
 
Question 10.8  
 
The midspan cross-section of the beam is now analyzed in ULS at t = ∞. A structural engineer 
decides to apply Ap = 4000 mm2 and assumes that the working prestressing stress σpm∞ = 1200 
N/mm2. Bending moment capacity needs to be calculated. Sketch the strain distribution over the 
height of the midspan cross-section and show the equilibrium between external and internal forces. 
Use the bi-linear ULS stress - strain diagram of concrete and mark important points/values.  
 
Answer 10.8 
 

 
 
Question 10.9  
 
Determine the height of the concrete compression zone. 
 
Answer 10.9 
 
Assume that a prestressing steel stress 0,95fpk/γs is reached. 
 
0,95fpk/γs = 0,95·1860/1,1 = 1606 N/mm2  
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p p,ULS
u

cd

4000 1606 343 mm500,75 750
1,5

A
x

bf
σ

α
⋅

= = =
⋅ ⋅

 

 
Question 10.10  
 
Check whether the actual prestressing steel stress equals the assumed stress and, if not, explain (in 
words, no calculation) which next step must be taken to arrive at the correct answer. Indicate the 
impact on, e.g., concrete compression zone height and prestressing steel stress.  
 
Answer 10.10 
 
Increase of prestressing steel strain: 
 

p u 3 3 3
p

u

3
p

1515 3433,5 10 3,5 10 12,0 10
343

1200 6,2 10
195000

d x
x

ε

ε

− − −

−
∞

−  − ∆ = ⋅ ⋅ = ⋅ ⋅ = ⋅   
  

= = ⋅

  

 
total strain: 18,2 ‰ 
 

( ) 2
p

18,2 7,81522 1691 1522 1522 65 1587 N/mm
35 7,8

σ − = + ⋅ − = + = − 
 

 
Assumed was: 1606 N/mm2. That’s too high => reduce the assumed σp,ULS => reduction of xu => 
increase of prestressing strain increase => increase of total prestressing steel strain => increase of 
prestressing steel stress 
 
Question 10.11  
Calculate the bending moment resistance MRd at mid-span (use the assumed prestressing steel 
stress).  
 
Answer 10.11 
 
Units [N, mm] 

 
 

( ) ( ) 6
Rd 900 134 400 1200 1515 134 4000 406 5920 10 NmmM = − ⋅ ⋅ + − ⋅ ⋅ = ⋅  
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Question 10.12  
 
Check whether there is sufficient rotational capacity at the mid-span cross-section (use the concrete 
compression zone height from question 10.9. 
 
 Rotational capacity: 

 

sp

sydppm,
s

pk

u

where
500

500

AA

AfA
f

f

fd
x

+

+







−

=

+
≤

∞σ
γ

 

 
Answer 10.12 
 
As = 0 
 

pk
pm, p yd s

s 2

p s

1860 1200 4000 0
1,1 491 N/mm

4000 0

f
A f A

f
A A

σ
γ ∞

   − + − ⋅ +   
   = = =

+ +
 

 
343 500? ?

1515 500 491
0,23! !0,50
OK

≤
+

≤  
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Example 11 - Prestressed concrete 
 
A post-tensioned beam has a span of ℓ = 20 m, see figure 11.1. The beam has a rectangular cross-
section; width b = 0,9 m and height h = 1,5 m. The beam is prestressed using bonded tendons (strands 
in ducts). The fictitious tendon profile consists of a parabola with a radius of curvature R over 0,5ℓ 
= 10 m (A-C), and a linear, horizontal part over 0,5ℓ = 10 m (C-B).  
 
The bottom of the parabola (tendon profile A-C) is at position C in Figure 11.1, which is at 0,5ℓ = 
10 m from the left support (support A).  
 

 
 
Figure 11.1  Side view of the beam including fictitious tendon profile (not to scale).  
 
Parameters: 
 
Density concrete    : ρ = 25 kN/m3 

Variable load      : qQk = 15 kN/m 
Load factors ULS:    : γG = 1,2 γQ = 1,5  γP = 1,0 
Concrete strength class   : C50/60 
 
Strength class of prestressing steel  : Y1860  
Elastic modulus prestressing steel  : Ep = 195000 N/mm2  
 
Question 11.1  
 
Calculate the maximum allowable tendon eccentricities (epA (↑) and epB (↓)) relative to the centroidal 
axis at the two anchors such that no tensile stresses at sections A and B occur.  
 
Answer 11.1 
 
No bending moments from G and Q; prestressing only. 
 
Kern area: h/6 = 1500/6 = 250 mm. 
Max. eccentricities: 
 
epA = 250 mm (↑) and epB = 250 mm (↓) 
 
Question 11.2  
 
Calculate the radius of curvature R of the parabola based on epA, epB determined in question 11.1. 
 

centroidal axis 



 

 73 

Answer 11.2 
 

 
 

parabola expression: ( )
( )

22
32 10000

100 10 mm
8 8 250 250
lR
f

⋅
= = = ⋅

⋅ +
 

 
Question 11.3  
 
Show in a figure all the loads on the beam from a prestressing force P, assuming that there is no 
friction or wedge set. 
 
Answer 11.3 
 

 
 
 
Question 11.4  
 
Calculate and draw the bending moment diagram resulted from a prestressing force P. Assume that 
there is no friction and no wedge set.  
 
Answer 11.4 
 
Two components: 
 
1 
External bending moments at A and B from tendon eccentricities. 
 
2 
Upward curvature pressure from A to C; bending moment at midspan = 0,5·( ql2 / 8). 
 

Parabola expression: 

2 2

P 2

2
P

8 8 2
16

1
16

l lR
f e

P Peq
R l

q l Pe

= =
⋅

= =

=

 

 
 

e = 250 mm 

R = 100 m 
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Question 11.5  
 
Calculate the minimum working prestressing force Pm∞ [kN] required to have no tension in the 
midspan cross-section, at maximum SLS load.  
 
Answer 11.5 
 
G = 0,9·1,5·25 = 33,75 kN/m 
Q = 15 kN/m 
 
Total: 48,75 kN/m 
 
Bending moment at midspan: ql2 / 8 = 48,75·202 / 8 = 2438 kNm 
 
Check bottom fiber level. 
 
Units [kN, m]: 
 

2 2

0, 25 2438 01 10,9 1,5 0,9 1,5 0,9 1,5
6 6

4876 kN

P P

P

− − + ≤
⋅ ⋅ ⋅ ⋅ ⋅

≥

 

 
Question 11.6  
 
The tendons are stressed from support A. Sketch the profile of the prestressing force Pm,x/Pm,x=0 at t 
= 0 over the full length of the beam. Mark important points/values. Assume that the friction 
coefficient μ = 0,24 and the wobble factor k = 0,015 rad/m.  
 
Prestressing force including frictional loss: 

( ) ( ) ( )kxexPxP +−⋅== θµ0mm  
 
friction coefficient      μ = 0,24 
wobble factor              k = 0,015 rad/m 
 
Answer 11.6 
 

Use x
R

θ ∆
∆ =  

1 

2 
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at C: 
 

A => C: 
10 0,1

100
x

R
θ ∆

∆ = = =  

 
( ) ( ) ( ) ( ) ( ) ( )0,24 0,1 10 0,015

m m m m0,942kxP C P A e P A e P Aµ θ− + − ⋅ + ⋅= ⋅ = ⋅ =  
 
at B: 
 

C => B: 10 0x
R

θ ∆
∆ = = =

∞
 (no curvature) 

 
( ) ( ) ( ) ( ) ( ) ( )0,24 0,1 0 20 0,015

m m m m0,908kxP C P A e P A e P Aµ θ− + − ⋅ + + ⋅= ⋅ = ⋅ =  
 
Question 11.7  
 
A prestressing force Pm0 = 5800 kN (section A) is used. Calculate the time-dependent prestress losses 
due to shrinkage, creep and relaxation in N/mm2 at t = ∞ at midspan (i.e. in the midspan cross-section, 
section C). The tendons can assumed to have an initial stress σpi = 1200 N/mm2 at section C. Assume 
that the beam is always fully loaded (maximum SLS load). 
Concrete modulus of elasticity : 36000 N/mm2 
Creep coefficient : φ = 2,1 
Deformation caused by shrinkage : εcs = 0,25 ‰  
 
Answer 11.7 
 
Pm0 = 5800 kN at A 
 
friction: PC = 0,942 PA => PC = 5464 kN 
 
Concrete stress at prestressing steel level: 
 
Bending moment from G and Q: 2438 kNm 
 
Units [kN, m]: 
 

2 2
c

3 3

5464 (5464 0,25) 0,25 2438 0,25 4047 1059 2988 kN/m 2,99 N/mm1 10,9 1,5 0,9 1,5 0,9 1,5
12 12

σ ⋅ ⋅ ⋅
= − − + = − + = − = −

⋅ ⋅ ⋅ ⋅ ⋅
 

 
Concrete strain at prestressing steel level: 
 
εc = -2,99/36000 
 
Creep: 
 

2
p

2,992,1 34 N/mm
36000

E− ⋅ ⋅ = − 
 

 

 



 

 76 

Shrinkage: 
 

3 2
p0, 25 10 49 N/mmE−− ⋅ ⋅ = −  

 
Relaxation: 
 

2
pi

pr 9,1 0,65 0,75 (1 0,65) 5 5

pi

2
pr

1200 N/mm
1200 0,65
1860

0,66 2,5 500 10 3,13 10

38 N/mm

e

σ

µ

σ
σ

σ

⋅ ⋅ − − −

=

= =

∆
= ⋅ ⋅ ⋅ ⋅ = ⋅

∆ =

 

 
Total loss: 34 + 49 + 0,8·38 = 113 N/mm2  
 
Question 11.8  
 
The midspan cross-section of the beam is now analyzed in ULS at t = ∞. A structural engineer 
decides to apply Ap = 4500 mm2 and assumes that the working prestressing stress σpm∞ = 
1100 N/mm2. The engineer wants to determine the bending moment capacity at ULS. 
 
Sketch the strain distribution over the height of the midspan cross-section and show the external and 
internal forces.  
 
Use the bi-linear ULS stress - strain diagram of concrete and mark important points/values.  
 
Answer 11.8 
 
 

 
 
 
Question 11.9  
 
Calculate the bending moment resistance MRd and the design bending moment MEd at mid-span 
(section C).  
 
Answer 11.9 
 
Assume that a prestressing steel stress 0,95fpk/γs is reached. 
 
0,95fpk/γs = 0,95·1860/1,1 = 1606 N/mm2  
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p p,ULS
u

cd

4500 1606 322 mm500,75 900
1,5

A
x

bf
σ

α
⋅

= = =
⋅ ⋅

 

 
Increase of prestressing steel strain: 
 

p u 3 3 3
p

u

3
p

700 250 3223,5 10 3,5 10 7,4 10
322

1100 5,6 10
195000

d x
x

ε

ε

− − −

−
∞

−  + − ∆ = ⋅ ⋅ = ⋅ ⋅ = ⋅   
  

= = ⋅

  

 
Total strain: 7,4 + 5,6 = 13,0 ‰ 
 
Actual prestressing steel stress: 
 

( ) 2
p

13,0 7,81522 1691 1522 1554 N/mm
35 7,8

σ − = + ⋅ − = − 
 

 
Note: Assumed was 1606 N/mm2. That’s too high 
 
Horizontal force equilibrium: 
 
NP = Nc ≈ 4500·1606 = 7227·103 N 
 
Bending moment resistance: 
 

( ) ( ) ( )
( )

Rd u C P

3 3

6 6

1 (250)
2

750 0,39 322 7227 10 250 7227 10 4500 1100

4513 569 10 5082 10 Nmm

M h x N Nβ = − + ⋅∆ 
 

= − ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅

= + ⋅ = ⋅

 

 
Design bending moment: 
 

( )

( )

( )

2
Ed P

2 3

1
8

1 33,75 1,2 15 1,5 20 4500 1100 0,25
8
3150 1238 1912 kNm

M G Q l P e∞

−

= + −

= ⋅ + ⋅ ⋅ − ⋅ ⋅

= − =
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Example 12 - Prestressed concrete 
 
A beam has a rectangular cross-section; width b = 0,6 m and height h = 2,0 m. The beam is post-
tensioned using curved tendons (strands in ducts) , see figure 12.1. The beam has a 30 m span. The 
fictitious tendon profile consists of two parabolas, namely parabola 1 with a radius of curvature R1 = 
100 m over 15 m and parabola 2 with R2 = 120 m over 15 m  
 
The bottom of both parabolas (at 0,2 m from the bottom fiber of the beam) is at mid span position A 
(they joint at this position). 
 

 
 
Figure 12.1  Side view of the girder including fictitious tendon profile (not to scale).  
 
Parameters: 
 
Density concrete    : ρ = 25 kN/m3 

Variable load      : qQk = 10 kN/m 
 
Strength class of concrete   : C50/60 
 
Strength class of prestressing steel  : Y1860S7  
Elastic modulus prestressing steel  : Ep = 195000 N/mm2  
 
Question 12.1  
 
Calculate the tendon eccentricities relative to the centroidal axis at the two anchors.  
 
Answer 12.1 
 

Parabola expression: 
2

2
xy
R

=  

 

R1 = 100 m: 
215 1,125 m

2 100
y = =

⋅
 

R2 = 120 m: 
215 0,9375 m

2 120
y = =

⋅
 

 
eleft = 2/2 - 0,2 - 1,125 = -0,325 m ↑ 
 
eright = 2/2 - 0,2 - 0,9375 = -0,1375 m ↓ 

centroidal axis 

A 
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Question 12.2  
 
Show in a figure all the loads on the beam from a prestressing force P and calculate and draw the 
bending moment diagram resulting from a prestressing force P. Assume that there is no friction and 
no wedge set. 
 
Answer 12.2  
 
Loads (engineering model): 
• Axial compressive force P. 
• Concentrated bending moments from tendon eccentricity at the anchors. 
• Upward curvature pressures. 
 

 
 

Additional info: 
Exact forces and bending moment at an anchor: Pcosα 
horizontal force; Psinα vertical force; e·Pcosα (α follows 
from the tendon profile) 

 
Bending moment from: 
 
• Concentrated bending moments at both beam ends. 
• Uniformly distributed upward curvature pressure over full beam length: P/120. 
• Uniformly distributed upward curvature pressure over half beam length: P/100 - P/120. 
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Question 12.3  
 
Calculate the maximum initial prestressing force Pm0 [kN] allowed to have no tension in the 
midspan cross-section when stressing the tendons.  
 
Answer 12.3  
 
Directly after stressing the tendons: Selfweight only 
 
G = 0,6·2,0·25 = 30 kN/m 
 
Bending moment at midspan: ql2 / 8 = 30·302 / 8 = 3375 kNm 
 
Check top fiber level. 
 
Units [kN, m]: 
 

2 2

0,8 3375 01 10,6 2,0 0,6 2,0 0,6 2,0
6 6

P P
− + − ≤

⋅ ⋅ ⋅ ⋅ ⋅
 

𝑃𝑃 ≤ 7232 𝑘𝑘𝑁𝑁 
 
Question 12.4  
 
Calculate the minimum working prestressing force Pm∞ [kN] required to have no tension in the 
midspan cross-section, at maximu m SLS load.  
 
Answer 12.4 
 
G = 30 kN/m 
Q = 10 kN/m 
 
Bending moment from Q at midspan: ql2 / 8 = 10·302 / 8 = 1125 kNm 
 
Check bottom fiber level. 
 
Units [kN, m]: 
 

2 2

0,8 3375 1125 01 10,6 2,0 0,6 2,0 0,6 2,0
6 6

P P +
− − + ≤

⋅ ⋅ ⋅ ⋅ ⋅
 

𝑃𝑃 ≥ 3971 𝑘𝑘𝑘𝑘 
 
Question 12.5  
 
Each tendon is stressed from its both ends; first from the left hand side support, followed by stressing 
from the right hand side support. Sketch the profile of the prestressing force Pm,x/Pm,x=0 at t = 0 over 
the full length of the beam after stressing from both ends. Mark important points/values. Assume that 
the friction coefficient μ = 0,16 and the wobble factor k = 0,012 rad/m. Assume that there is no wedge 
set. 
 
Use the following expression and input:  
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Prestressing force including frictional loss: 
 

( ) ( ) ( )kxexPxP +−⋅== θµ0mm  
 
friction coefficient      μ = 0,16 
wobble factor              k = 0,012 rad/m 
 
Answer 12.5 
 

Use x
R

θ ∆
∆ =  

First from left only: 
 

at 15 m (midspan):  15 0,15
100

x
R

θ ∆
∆ = = =  

 
( ) ( ) ( ) ( ) ( ) ( )0,16 0,15 15 0,02

m m m m15 m 0 0 0,95 0kxP x P x e P x e P xµ θ− + − ⋅ + ⋅= = = ⋅ = = ⋅ = =  
 

at 30 m:  15 15
100 120

x
R

θ ∆
∆ = = +  

 
( ) ( ) ( ) ( ) ( ) ( )0,16 15/100 15/120 30 0,02

m m m m30 m 0 0 0,90 0kxP x P x e P x e P xµ θ− + − ⋅ + + ⋅= = = ⋅ = = ⋅ = =  

(not to scale) 

(not to scale) 
 
Since 15/120 < 10/120, the slope of the right hand side part of the curve is smaller than the slope of 
the left hand side part. This implies that the two solid lines don’t intersect at midspan, but a bit to the 
left. 
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Question 12.6  
 
The tendons are assumed to be stressed to a stress σp,max = 1395 N/mm2. Wedge set now is wset = 
2 mm. Calculate the wedge set influence length lset when anchoring a tendon after stressing it from 
the left hand side support. Sketch the profile of the prestressing steel stress immediately after 
anchoring. Use the results from question 12.5. 
 

x

Ew
l

∆
∆

=
μp,

pset
set σ  

 
Answer 12.6 
 
Units: N & mm: 
 

( ) p,maxp,μ
3

1 0,95
15 10x

σσ − ⋅∆
=∆ ⋅

 

 
set p 3

set
p,μ

3

2 195000 9,16 10 mm0,05 1395
15 10

w E
l

x
σ

⋅
= = = ⋅

∆ ⋅
∆ ⋅

 

 
Question 12.7  
 
The mid-span cross-section of the beam is now analyzed in ULS at t = ∞. Ap = 4500 mm2 is assumed 
and the working prestressing stress σpm∞ = 1200 N/mm2. The bending moment capacity has to be 
calculated. Use the bi-linear ULS stress - strain diagram of concrete. First, sketch strain distribution 
over beam height, indicate the position of forces and mark important points/values.  
 
Answer 12.7 

 
Question 12.8  
 
Determine the height of the concrete compression zone. 
 
Answer 12.8 
 
Assume that a prestressing steel stress 0,95fpk/γs is reached. 
 
0,95fpk/γs = 0,95·1860/1,1 = 1606 N/mm2  
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p p,ULScu
u

cd cd

4500 1606 482 mm500,75 600
1,5

ANx
bf bf

σ
α α

⋅
= = = =

⋅ ⋅
 

Question 12.9   
 
Check whether the actual prestressing steel stress equals the assumed stress. 
 
Answer 12.9  
 
Increase of prestressing steel strain: 
 

p u 3 3 3
p

u

3
p

1800 4823,5 10 3,5 10 9,6 10
482

1200 6,2 10
195000

d x
x

ε

ε

− − −

−
∞

−  − ∆ = ⋅ ⋅ = ⋅ ⋅ = ⋅   
  

= = ⋅

  

 
total strain: 15,8 ‰ 

( ) 2
p

15,8 7,81522 1691 1522 1572 N/mm
35 7,8

σ − = + ⋅ − = − 
 

Assumed was: 1606 N/mm2. That’s too high => reduce the assumed σp,ULS => reduction of xu => 
increase of prestressing strain increase => increase of total prestressing steel strain => increase of 
prestressing steel stress 
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Example 13 - Prestressed concrete 
 
A simply supported post-tensioned beam has an ℓ = 16 m span, see figure 13.1. The beam has a 
rectangular cross-section (h = 1200 mm; b = 500 mm). The beam is prestressed using bonded 
tendons. The tendon profile is modeled using two parabolas and a horizontal, linear part. There are 
no kinks at the positions where the parabola and the linear parts join. 
 
Beam span: ℓ = 16 m (ℓ1 = 4 m, ℓ2 = 8 m). 
Tendon eccentricities: ep1 = 0,2 m; ep2 = 0,5 m.  
 

  
 
Figure 13.1  Side view of the beam including tendon profile (not to scale).  

 
Parameters: 
 
Density concrete : ρ = 25 kN/m3  
Variable load  : qQk = 15 kN/m 
 
Concrete strength class : C40/50 
Concrete modulus of elasticity : 35000 N/mm2 
Creep coefficient : φ = 1,5 
Deformation caused by shrinkage : εcs = 0,3 ‰  
Strength class of prestressing steel : Y1860  
Prestressing steel modulus of elasticity : 195000 N/mm2 (strands) 
 
 
Question 13.1  
 
Calculate the radius of curvature of the parabolic parts of the tendon profile.  
 
Answer 13.1 
 

Parabola expression: 
2

2
xy
R

=  

 
240,2 0,5 11,4 m

2
y R

R
= + = ⇒ =  

 
Question 13.2   
 
Show in a sketch all the loads on the beam caused by a prestressing force P. Assume that there is no 
friction and no wedge set.  

neutral axis 
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Answer 13.2   
 
Loads (engineering model): 
• Axial compressive force P. 
• Concentrated bending moments from tendon eccentricity at the anchors. 
• Upward curvature pressures. 
 

 
 

Additional info: 
Exact forces and bending moment at an anchor: Pcosα 
horizontal force; Psinα vertical force; ep1·Pcosα (α follows 
from the tendon profile). 
α = 2·(0,2+0,5)/4 = 0,35 rad 
alternative: 
α = 4/11,4 = 0,35 rad. 
Check vertical force equilibrium: 
Psinα ↓ at the anchor 
(P/R)·l1 ↑ from curvature pressure 
α = l1/R and sinα ≈ α: (P/R)·l1 ↑ = Pα ≈ Psinα; OK. 

 
Question 13.3  
 
Calculate the bending moment from selfweight (G) and variable load (Q) at midspan (i.e. at the 
midspan cross-section), at maximum SLS load.  
 
Answer 13.3 
 
G = 0,5·1,2·25 = 15 kN/m 
Q = 15 kN/m 
 
Bending moment from G+Q at midspan: ql2 / 8 = 30·162 / 8 = 960 kNm 
 
Question 13.4   
 
Calculate the bending moment from prestressing (P) at midspan (i.e. at the midspan cross-section) 
expressed as a function of the prestressing force P. Assume that there is no friction and no wedge 
set.  
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Answer 13.4   
 

 
 
Midspan bending moment from prestressing: -P·ep2  
 
Question 13.5   
 
Calculate the minimum working prestressing force Pm∞ [kN] required to have no tension at midspan 
(i.e. at the midspan cross-section) at maximum SLS load.  
 
Answer 13.5 
 
Check bottom fiber level. 
 
Units [kN, m]: 

2 2

0,5 960 01 10,5 1,2 0,5 1,2 0,5 1,2
6 6

1375 kN

P P

P

− − + ≤
⋅ ⋅ ⋅ ⋅ ⋅

≥
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Question 13.6   
 
A prestressing force Pm0 = 1650 kN is used. Calculate the concrete stress at the prestressing steel 
level at midspan (i.e. at the midspan cross-section), at maximum SLS load. Assume that there is no 
friction and no wedge set. 
 
Answer 13.6 
 
Bending moment: 960 kNm - 0,5P 
P = 1650 kN 
 
z = ep2 = 0,5 m 
 
units [kN, m] 
 

2 2

3

1650 (960 0,5 1650) 0,5 1810 kN/m 1,81 N/mm10,5 1,2 0,5 1,2
12

− ⋅ ⋅
− + = − = −

⋅ ⋅ ⋅
 

 
Question 13.7   
 
A prestressing force Pm0 = 1650 kN is used. Calculate the time-dependent prestress losses due to 
shrinkage, creep and relaxation in N/mm2 at t = ∞ at midspan (i.e. at the midspan cross-section). The 
tendons are assumed to be stressed to an initial stress σpi = 1395 N/mm2. 
 
Assume that there is no friction and no wedge set. 
 

 
 
Answer 13.7 
 
Pm0 = 1650 kN 
 
Concrete strain at prestressing steel level: 
εc = -1,81/35000 
 

The equation for the calculation of relaxation is: 
 

(0,75 (1-μ))
pr (9,1μ) -5

1000
pi

Δσ t= 0,66 ρ e 10
σ 1000

  ⋅ 
 

 

where:  ∆σpr   : is absolute value of the relaxation losses of the prestressing steel 
   σpi : is the initial stress in the prestressing steel 

           t : is the time after tensioning in hours (t = ∞ = 500000 hours) 
           µ : = σpi / fpk, where fpk is the characteristic value of the tensile strength of the 

prestressing steel 
             ρ1000 : is the value of relaxation loss (in %), at 1000 hours after tensioning and at a mean 

temperature of 20°C 
 ρ1000 : = 2,5%  

The influence of shrinkage and creep reduces the relaxation. When taking into account shrinkage and creep 
losses, relaxation loss is: pr(incl,c+s) pr(excl,c+s)0,8σ σ∆ = ∆  



 

 88 

Creep: 
 

2
p

1,811,5 15 N/mm
35000

E− ⋅ ⋅ = − 
 

 

 
Shrinkage: 
 

3 2
p0,30 10 59 N/mmE−− ⋅ ⋅ = −  

 
Relaxation: 
 

2
pi

pr 9,1 0,75 0,75 (1 0,75) 5 2

pi

2
pr

1395 N/mm
1395 0,75
1860

0,75 2,5 500 10 2,72 10

68 N/mm

e

σ

µ

σ
σ

σ

⋅ ⋅ − − −

=

= =

∆
= ⋅ ⋅ ⋅ ⋅ = ⋅

∆ =

 

 
Total loss: 15 + 59 + 0,8·68 (N/mm2)  
 
Question 13.8   
 
The tendons are stressed from one end, namely the left support. Sketch the profile of the prestressing 
force (ratio Pm(x)/Pm(x = 0)) at t = 0 over the full length of the beam. Mark important points/values. 
Use the following expression and input.  
 
Prestressing force including frictional loss: 
 

( ) ( ) ( )kxexPxP +−⋅== θµ0mm  
 
friction coefficient      μ = 0,18 
wobble factor              k = 0,012 rad/m 
 
Answer 13.8 
 

Use x
R

θ ∆
∆ =  

 
R = 11,4 m 
 
at 4 m: 
 

4
11,4

x
R

θ ∆
∆ = =  

 
at 16 m: 
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4 4
11,4 11,4

x
R

θ ∆
∆ = = +  

 
( ) ( ) ( ) ( ) ( ) ( )0,18 4/11,4 4 0,012

m m m m4 m 0 0 0,93 0kxP x P x e P x e P xµ θ− + − ⋅ + ⋅= = = ⋅ = = ⋅ = =  
 

( ) ( ) ( ) ( ) ( ) ( )0,18 4/11,4 0 12 0,012
m m m m12 m 0 0 0,91 0kxP x P x e P x e P xµ θ− + − ⋅ + + ⋅= = = ⋅ = = ⋅ = =  

 
( ) ( ) ( ) ( ) ( ) ( )0,18 4/11,4 0 4/11,4 16 0,012

m m m m16 m 0 0 0,85 0kxP x P x e P x e P xµ θ− + − ⋅ + + + ⋅= = = ⋅ = = ⋅ = =  
 

 
 
Question 13.9  
 
The tendons are assumed to be stressed to a stress σp,max = 1395 N/mm2. Wedge set is wset = 1,5 mm. 
Calculate the wedge set influence length and sketch the profile of the prestressing steel stress 
immediately after anchoring. Use the results from question 13.8. 
 
Influence length of wedge set: 
 

x

Ew
l

∆
∆

=
μp,

pset
set σ  

 
Answer 13.9  
 
Units: N & mm: 
 

( ) p,maxp,μ
3

1 0,93
4 10x

σσ − ⋅∆
=∆ ⋅

 

 
set p 3

set
p,μ

3

1,5 195000 3,5 10 mm0,07 1395
4 10

w E
l

x
σ

⋅
= = = ⋅

∆ ⋅
∆ ⋅
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Question 13.10  
 
The midspan cross-section of the beam is now analyzed at ULS at t = ∞. Bending moment capacity 
needs to be calculated. Sketch the strain distribution over the height of the midspan cross-section 
and show the equilibrium between external and internal forces. Use the bi-linear ULS stress - strain 
diagram of concrete and mark important points/values.  
 
Answer 13.10 
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Example 14 - Prestressed concrete 
 
A post-tensioned beam has an L = 30 m span, see figure 14.1. The beam has a rectangular cross-
section; width b = 0,6 m and height h = 2,0 m. The beam is prestressed using curved tendons. The 
fictitious tendon profile expression is: 
 
y = 4,348·10-3 x2 ‒ 0,1338 x + 0,3 
 
where x and y are in [m]. The origin of the axis system is at support A, at the level of the neutral axis, 
see figure 14.1. The radius of curvature R = 115 m. 
Tendon eccentricities at the anchors: eL = 0,3 m; eR = 0,2 m  
 

 
 
Figure 14.1  Side view of the girder including fictitious tendon profile (not to scale).  
 
Parameters: 
Density concrete    : ρ = 25 kN/m3 

Variable load      : qQk = 20 kN/m 
 
Strength class of concrete   : C45/55 
Initial tensile stress    : σpmo = 0,75·1860 = 1395 N/mm2 
Elastic modulus prestressing steel  : Ep = 195000 N/mm2  
 
Question 14.1  
 
Calculate and draw the bending moment diagram resulting from a prestressing force P. Assume that 
there is no friction and no wedge set.  
 
Answer 14.1 
 
Prestressing loads on the beam: 
1 
Concentrated bending moments from anchor eccentricity at both beam ends: 
2 
Uniformly distributed load from curvature pressure (upwards) 
 
Total: 
 

neutral axis 
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midspan cross-section: 
from 1: +(0,3 + 0,2)P / 2 = +0,25P 
 
from 2: qp = P/R where R = 115 m 
qpL2/8 = -(P/115)·302/8 = -P/0,978 
 
Total: -0,728P 

 
Question 14.2  
 
Calculate the maximum initial prestressing force Pm0 [kN] allowed to have no tension in the midspan 
cross-section when stressing the tendons.  
 
Answer 14.2 
 
G = 0,6·2,0·25 = 30 kN/m 
Q = 0 kN/m (prestressing the beam!) 
 
Bending moment from G at midspan: ql2 / 8 = 30·302 / 8 = 3375 kNm 
 
Check top fiber level. 
 
Units [kN, m]: 
 

0 0

2 2

0

0,728 3375 01 10,6 2,0 0,6 2,0 0,6 2,0
6 6

8552 kN

P P

P

− + − ≤
⋅ ⋅ ⋅ ⋅ ⋅

≤
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Question 14.3  
 
Calculate the minimum working prestressing force Pm∞ [kN] required to have no tension in the 
midspan cross-section, at maximum SLS load.  
 
Answer 14.3 
 
G = 30 kN/m 
Q = 20 kN/m 
 
Bending moment from Q at midspan: ql2 / 8 = 20·302 / 8 = 2250 kNm 
 
Check bottom fiber level. 
 
Units [kN, m]: 
 

2 2

0,728 3375 2250 01 10,6 2,0 0,6 2,0 0,6 2,0
6 6

5300 kN

P P

P

∞ ∞

∞

+
− − + ≤

⋅ ⋅ ⋅ ⋅ ⋅

≥

 

 
Question 14.4  
 
The tendons are stressed from one end, namely at support A. Sketch the profile of the prestressing 
force at t = 0 over the full length of the beam. Mark important points/values. Assume that the friction 
coefficient μ = 0,30 and the wobble factor k = 0,01 rad/m.  
 
Use the following expression and input:  
 
Prestressing force including frictional loss: 
 

( ) ( ) ( )kxexPxP +−⋅== θµ0mm  
 
friction coefficient      μ = 0,30 
wobble factor              k = 0,01 rad/m 
 
Answer 14.4 
 

Use x
R

θ ∆
∆ =  

 
at 30 m: 
 

305 rad
115

x
R

θ ∆
∆ = =  

 
( ) ( ) ( ) ( ) ( ) ( )0,30 30/115 30 0,01

m m m m30 m 0 0 0,845 0kxP x P x e P x e P xµ θ− + − ⋅ + ⋅= = = ⋅ = = ⋅ = =  
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Question 14.5  
 
The tendons are assumed to be stressed to a stress σp,max = 1395 N/mm2. Wedge set appears to be wset 
= 4 mm. Calculate the wedge set influence length and sketch the profile of the prestressing steel 
stress immediately after anchoring, using results from question 14.4. 
 

x

Ew
l

∆
∆

=
μp,

pset
set σ  

 
Answer 14.5 
 
Units: N & mm: 
 

( ) ( )p,max 3 2p,μ
3 3

1 0,845 1 0,845 1395
7,2 10 N/mm

30 10 30 10x
σσ −− ⋅ − ⋅∆

= = = ⋅∆ ⋅ ⋅
 

 
set p 3

set 3
p,μ

4 195000 10,4 10 mm
7,2 10

w E
l

x
σ −

⋅
= = = ⋅

∆ ⋅
∆

 

 

 
 
Question 14.6 
 
The beam is now analyzed at t = ∞.  
 
Parameters: 
Strength class of concrete     : C45/55  
Strength class of prestressing steel   : Y1860S7  
 
Cross-sectional area of the tendons   : Ap = 4000 mm2 
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Working prestressing stress    : σpm∞ = 1000 N/mm2  
 
Tendons; effective depth of cross-section  : dp => follows from the tendon profile 
 
The mid-span cross-section is analyzed in ULS. Bending moment capacity is calculated. Draw the 
strain distribution over the height of the mid-span cross-section and show the equilibrium between 
external and internal forces. Use the bi-linear ULS stress - strain diagram of concrete and mark 
important points/values.  
 
Answer 14.6 
 

 
 
Question 14.7  
 
Determine the height of the concrete compression zone. 
 
Answer 14.7 
 
Assume that a prestressing steel stress 0,95fpk/γs is reached. 
 
0,95fpk/γs = 0,95·1860/1,1 = 1606 N/mm2  
 

p p,ULScu
u

cd cd

4000 1606 476 mm450,75 600
1,5

ANx
bf bf

σ
α α

⋅
= = = =

⋅ ⋅
 

 
Question 14.8  
 
Check whether the actual prestressing steel stress equals the assumed stress.  
 
Answer 14.8 
 
Increase of prestressing steel strain: 
 

p u 3 3 3
p

u

3
p

1729 4763,5 10 3,5 10 9,2 10
476

1000 5,1 10
195000

d x
x

ε

ε

− − −

−
∞

−  − ∆ = ⋅ ⋅ = ⋅ ⋅ = ⋅   
  

= = ⋅

  

 
total strain: 14,3 ‰ 
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3 3
3 335 10 7,8 107,8 10 21,4 10

2

− −
− − ⋅ − ⋅

⋅ + = ⋅ 
 

 required to arrive at 0,95fpk/γs. The strain is too small; 

actual prestressing steel stress will be smaller. 
 
Question 14.9  
 
Calculate the bending moment resistance MRd at mid-span.  
 
Answer 14.9 
 
Horizontal force equilibrium: 
 
NP = Nc ≈ 4000·1606 N 
 
Bending moment resistance (relative to centroidal axis level): 
 

( )

Rd u C p P

3

6

1 1
2 2

1 12000 0,39 476 6424 10 1729 2000 1606 1000 4000
2 2

6999 10 Nmm

M h x N d h Nβ   = − + − ⋅∆   
   

   = ⋅ − ⋅ ⋅ ⋅ + − ⋅ ⋅ − ⋅   
   

= ⋅

 

 
Question 14.10  
 
Check whether there is sufficient rotational capacity at the mid-span cross-section.  
 
 Rotational capacity: 

 

sp

sydppm,
s

pk

u

where
500

500

AA

AfA
f

f

fd
x

+

+







−

=

+
≤

∞σ
γ

 

 
Answer 14.10 
 
As = 0 
 

pk
pm, p yd s

s 2

p s

1860 1000 4000 0
1,1 691 N/mm

4000 0

f
A f A

f
A A

σ
γ ∞

   − + − ⋅ +   
   = = =

+ +
 

 
476 500? ?

1729 500 691
0,28! !0,42
OK

≤
+

≤  
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Example 15 - Prestressed concrete 
 
A post-tensioned beam has an ℓ = 16 m span, see figure 15.1. The beam has a T-shaped cross-
section, see figure 15.2. The beam is prestressed using bonded tendons. The fictitious tendon profile 
is modeled using two kinks. 
 
Beam span: ℓ = 16 m (ℓ1 = 8 m, ℓ2 = 4 m). 
Tendon eccentricities at the anchors: espan = ep1 = 0,5 m; esupport = ep2 = 0,2 m.  
 

 
 
Figure 15.1  Side view of the girder including fictitious tendon profile (not to scale).  
 

 
 
Figure 15.2  Cross-section of the girder.  
 
Parameters: 
htotal : 1,20 m 
hflange : 0,25 m 
bflange : 0,70 m 
bweb : 0,30 m 
 
Cross-sectional area girder : Ac = 0,46 m2 
Moment of inertia : Ic = 61,4·10-3 m4 
Distance from neutral axis to top fibre : zt = 0,497 m 
Distance from neutral axis to bottom fibre : zb = 0,703 m 
 
Density concrete : ρ = 25 kN/m3  
Variable load  : qQk = 20 kN/m 
 
Concrete modulus of elasticity : 30000 N/mm2 
Creep coefficient : φ = 1,8 
Deformation caused by shrinkage : εcs = 0,20 ‰  
Strength class of prestressing steel : Y1860  
Prestressing steel modulus of elasticity : 195000 N/mm2  
 

neutral axis 
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Question 15.1   
 
Show in a figure all the loads on the beam from a prestressing force P. Assume that there is no friction 
and no wedge set.  
 
Answer 15.1 
 
Engineering model: 
 

 
where: 
 

p2 p1

2

e e
l

α
+

=  

Additional information (exact model) 
 

 
 
Question 15.2   
 
Calculate the bending moment from selfweight (G) and variable load (Q) at midspan (i.e. in the 
midspan cross-section), at maximum SLS load.  
 
Answer 15.2 
 
G + Q = (25·0,46 + 20) = 11,5 + 20 = 31,5 kN/m 
MG+Q = (G+Q)l2/8 = 31,5·162/8 = 1008 kNm 
 
Question 15.3   
 
Calculate the minimum working prestressing force Pm∞ [kN] required to have no tension at midspan 
(i.e. in the midspan cross-section) at maximum SLS load.  
 
Answer 15.3 
 
Bending moment caused by prestressing: 
 
Two components: 
1 
Anchor eccentricities. 
2 



 

 99 

Point loads at kinks (upwards). 
 

 
 
Bending moment at midspan position: 
 

p2 p1
2 p2 2 p2 p1

2

e e
P l Pe P l Pe Pe

l
α

+ 
− + = − + = − 

 
 

 
Check bottom fiber level. 
 
Units [kN, m]: 
 

3 3

0,5 0,703 1008 0,703 0
0,46 61,4 10 61,4 10

1461 kN

P P

P

− −

⋅ ⋅
− − + ≤

⋅ ⋅
≥

 

 
Question 15.4   
 
A structural engineer decides to apply a prestressing force Pm0 = 1746 kN. Calculate the concrete 
stress at prestressing steel level at midspan (i.e. in the midspan cross-section), at maximum SLS load. 
Assume that there is no friction and no wedge set. 
 
Answer 15.4 
 
Concrete stress at prestressing steel level: 
 
Bending moment from G and Q: 1008 kNm 
 
Units [kN, m]: 
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2 2
c 3 3

1746 (0,5 1746) 0,5 1008 0,5 3796 1099 2697 kN/m 2,7 N/mm
0,46 61,4 10 61,4 10

σ − −

⋅ ⋅ ⋅
= − − + = − + = − = −

⋅ ⋅
 

 
Question 15.5   
 
A prestressing force Pm0 = 1746 kN is used. Calculate the time-dependent prestress losses due to 
shrinkage, creep and relaxation in N/mm2 at t = ∞ at midspan (i.e. in the midspan cross-section). The 
tendons are assumed to be stressed to an initial stress σpi = 1200 N/mm2. 
 

 
 
Answer 15.5 
 
Concrete strain at prestressing steel level: 
 
εc = -2,7/30000 
 
Creep: 
 

1,8
−2,7

30000
𝐸𝐸𝑝𝑝 = −32 N/mm2 

 
Shrinkage: 
 

6 2
p200 10 39 N/mmE−− ⋅ ⋅ = −  

 
Relaxation: 
 

2
pi

pr 9,1 0,645 0,75 (1 0,645) 5

pi

2
pr

1200 N/mm
1200 0,645
1860

0,66 2,5 500 10 0,03

0,03 1200 36 N/mm

e

σ

µ

σ
σ

σ

⋅ ⋅ − −

=

= =

∆
= ⋅ ⋅ ⋅ ⋅ =

∆ = ⋅ =

 

 
Total loss: 32 + 39 + 0,8·36 = 100 N/mm2  

The equation for the calculation of relaxation is: 
 

(0,75 (1-μ))
pr (9,1μ) -5

1000
pi

Δσ t= 0,66 ρ e 10
σ 1000

  ⋅ 
 

 

where:  ∆σpr   : is absolute value of the relaxation losses of the prestressing steel 
   σpi : is the initial stress in the prestressing steel 

           t : is the time after tensioning (t = ∞ = 500000 hours) 
           µ : = σpi / fpk, where fpk is the characteristic value of the tensile strength of the 

prestressing steel 
         ρ1000 : is the value of relaxation loss (in %), at 1000 hours after tensioning and at a mean 

temperature of 20°C 
 ρ1000 : = 2,5%  

The influence of shrinkage and creep reduces the relaxation. When taking into account shrinkage and creep 
losses, relaxation loss is: pr(incl,c+s) pr(excl,c+s)0,8σ σ∆ = ∆  



 

 101 

Example 16 - Prestressed concrete 
 
A post-tensioned beam has an ℓ = 14 m span, see Figure 16.1. The beam has a rectangular cross-
section; beam height is 0,78 m and beam width is 0,35 m. The beam is prestressed using tendons. 
The fictitious tendon profile is modeled using a parabola (radius of curvature R = 25 m) over ℓ1 = 
4 m at midspan and two straight parts of ℓ2 = 5 m each.  
 
Beam span: ℓ = 14 m (ℓ1 = 4 m, ℓ2 = 5 m) 
 

 
 
Figure 16.1  Side view of the girder including fictitious tendon profile (not to scale).  
 
 
Question 16.1   
 
Calculate the drape of the parabola part of the tendon profile.  
 
Answer 16.1 
 

parabola expression: 
( )22 4000

80 mm
8 8 25000
lf
R

= = =
⋅

 

 
Question 16.2   
 
Calculate the position/height of the anchors, given that (1) the bottom of the parabola part of the 
tendon profile is at 80 mm from the cross-section’s bottom fibre and (2) there are no kinks in the 
tendon profile.  
 
Answer 16.2 
 

parabola: 

2

2

22 m :
25

xy
R

dy x
dx R

dyx
dx

=

=

= =

 

 
Vertical distance over l2: (2/25)·5 = 0,4 m 
 
Distance relative to bottom fiber: 0,08 + 0,4 = 0,48 m => 0,09 m above centroidal axis level. 
 
Question 16.3   
 
Show in a figure all the loads on the beam from a prestressing force P. Assume that there is no friction 
and no wedge set.  
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Answer 16.3 
 

 
where 
 
ep = 0,09 m and α = 2/25 = 0,4/5 = 0,08 rad. 
 
Question 16.4   
 
The tendons are stressed from one end, namely the left support. Sketch the profile of the prestressing 
force at t = 0 over the full length of the beam. Mark important points/values. Use the following 
expression and input:  
 
Prestressing force including frictional loss: 

( ) ( ) ( )kxexPxP +−⋅== θµ0mm  
 
friction coefficient      μ = 0,2 
wobble factor              k = 0,01 rad/m 
 
Answer 16.4 
 

Use x
R

θ ∆
∆ =  

 
x = 0: Pm(0) 
 
x = 5 m: 
 

0θ∆ =  (no curvature) 
 

( ) ( ) ( ) ( ) ( ) ( )0,2 0 5 0,01
m m m m5 m 0 0 0,99 0kxP P e P e Pµ θ− + − ⋅ + ⋅= ⋅ = ⋅ =  

 
x = 9 m: 
 

40
25

θ∆ = +  (total) 

 
( ) ( ) ( ) ( ) ( ) ( )0,2 4/25 9 0,01

m m m m9 m 0 0 0,95 0kxP P e P e Pµ θ− + − ⋅ + ⋅= ⋅ = ⋅ =  
 
x = 14 m: 
 

40 0
25

θ∆ = + +  (total) 
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( ) ( ) ( ) ( ) ( ) ( )0,2 4/25 14 0,01
m m m m14 m 0 0 0,94 0kxP P e P e Pµ θ− + − ⋅ + ⋅= ⋅ = ⋅ =  
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Example 17 - Prestressed concrete 
 
A pre-tensioned double T girder with a span of 20 m (see figure 17.1) is fully prestressed by 24 linear 
tendons. The fictitious tendon is positioned 150 mm from the bottom as shown in figure 17.1. The 
production and the construction phase are considered, both without a top layer. 
  

 
Figure 17.1  Overview of the girder including fictitious tendon profile and cross section B 

(midspan)(tendons are indicative) (dimensions [mm]) 
 
Parameters: 
Density concrete : ρ = 25 kN/m3 
Variable load  : qQk = 10 kN/m 
Dimensions girder : see figure 17.1 
Cross-sectional area girder : Ac = 0,38 m2  
Moment of inertia : Ic = 0,0157 m4  
Distance from centroidal axis to top fibre : zt = 0,282 m 
Distance from centroidal axis to bottom fibre : zb = 0,368 m 
Section modulus (top fibre) : Wt = 0,0557 m3   
Section modulus (bottom fibre) : Wb = 0,0426 m3  
Strength class of concrete : C45/55  
Elastic modulus concrete : 36000 N/mm2    
Strength class of prestressing steel : Y1860S7  
Cross-section of one strand (12.7 mm) : 98,71 mm2   
Initial tensile stress : σpmo = 0.75·1860 = 1395 N/mm2  
Elastic modulus prestressing steel : 195000 N/mm2  
Partial load factors : γG = 1,2   : γQ = 1,5 
Creep coefficient : φ = 2,0 
Deformation caused by shrinkage : εcs = 0,24 ‰  
 
Question 17.1  
 
Calculate the maximum initial prestress force Pm0 [kN] required in cross-section B to fully prestress 
the girder. Governing situations to be calculated are (at tendon release): 1) no tensile stresses at t = 
0 and 2) maximum concrete compressive stress at t = 0 (allowed: 0,6fck).  
 
Answer 17.1 
 
load: G = 0,38·25 = 9 kN/m 
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Selfweight and prestressing only. 
 
Tendon eccentricity: 
368 - 150 = 218 mm 
 
 
Prestressing loads: 
1 
Axial compressive force P. 
2 
Concentrated bending moment at both anchors; P·ep where ep = 218 mm 
 
Bending moment is constant over beam length; P·ep 
 
Bending moment G: ql2/8 = 9·202/8 = 450 kNm 
 
Check top fiber level. 
 
Units [kN, m] 
 

m0 m0

m0

0,218 450 0
0,38 0,0557 0,0557

6301 kN

P P

P

− + − ≤

≤
 

 
Check bottom fiber level. 
 
Units [kN, m] 
 

m0 m0
ck

m0

m0

0,218 450 0,6 0,6 45000
0,38 0,0426 0,0426

7,75 37563 kN
4847 kN

P P f

P
P

− − + ≥ − = − ⋅

≥ −
≤

 

 
Check bottom fiber level. 
 
Units [kN, m] 
 

m0 m0

m0

m0

0,218 450 0
0,38 0,0426 0,0426

7,75 10563
1363 kN

P P

P
P

− − + ≤

≤ −

≥
 

 
Question 17.2  
 
Calculate the distance over which prestress losses occur at t = 0 and sketch the profile of the 
prestressing stress, in N/mm2, in the linear tendons at t = 0 over the full length of the beam. Mark 
important points/values.  
 
Equations for anchorage of pre-tensioned steel 
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pm0
pt 1 2

bpt

σ
= α α

f
l φ  

1α  1,25 for sudden release 

2α  0,19 for 3 and 7-wire strands 
φ  is the nominal diameter of the strand 

pm0σ  is the strand stress just after release 

bptf = 3,9 N/mm2  
 

2 2
disp pt= + dl l  

 
pt1 pt= 0,8l l  or pt2 pt= 1,2l l  

 
2 pd pm

bpd pt2
bpd

α (σ - σ )
= +

f
l l

φ ∞  

pdσ  is the tendon stress corresponding to the force in the cracked cross-section 

pmσ ∞  is the stress after taking into account all losses 

bpdf  = 2.2 N/mm2 
 
Answer 17.2 
 

pm0
pt 1 2

bpt

σ 1395= α α 1,25 0,19 12,7 1079 mm
f 3,9

l φ = ⋅ ⋅ ⋅ =  

 
 
Question 17.3 
 
The elastic losses in the prestressing steel are caused by an average concrete compressive stress (at 
the fictitious tendon level) of -5,0 N/mm2. 
 
Calculate the average stress loss in the prestressing steel [N/mm2] due to elastic deformation. Explain 
briefly whether or not this loss can be compensated for; and if so, how this should be done. 
 
Answer 17.3 
 
Concrete strain: 
εc0 = -5/36000 
 

2
p( 5 / 36000) 27 N/mmE− ⋅ = −  

 
Stress loss can be compensated for by overstressing the tendons (initial stress level > 1395 N/mm2) 
 

1395 N/mm2; losses due to elastic 
shortening of the concrete not taken into 
account. 
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Question 17.4   
 
Calculate the time dependent prestress losses due to shrinkage, creep and relaxation in N/mm2 at t = 
∞ in cross-section B. 

 
 
Answer 17.4 
 
Prestressing steel stress directly after tendon release (tendon shortening due to concrete shortening): 
1395 - 27 = 1368 N/mm2. 
 
Elastic concrete strain at prestressing steel level: 
 
εc = -5/36000 
 
Creep: 
 

2
p

52,0 54 N/mm
36000

E− ⋅ ⋅ = − 
 

 

 
Shrinkage: 
 

6 2
p240 10 47 N/mmE−− ⋅ ⋅ = −  

 
Relaxation: 
 

2
pi

pr 9,1 0,74 0,75 (1 0,74) 5

pi

2
pr

1368 N/mm
1368 0,74
1860

0,66 2,5 500 10 0,047

0,047 1368 64 N/mm

e

σ

µ

σ
σ

σ

⋅ ⋅ − −

=

= =

∆
= ⋅ ⋅ ⋅ ⋅ =

∆ = ⋅ =

 

 
Total loss: 54 + 47 + 0,8·64 = 152 N/mm2  
 
Question 17.5 
 

The equation for the calculation of relaxation is: 
 

(0,75 (1-μ))
pr (9,1μ) -5

1000
pi

Δσ t= 0,66 ρ e 10
σ 1000

  ⋅ 
 

 

where:  ∆σpr   : is absolute value of the relaxation losses of the prestressing steel 
   σpi : is the initial stress in the prestressing steel 

           t : is the time after tensioning (t = ∞ = 500000 hours) 
           µ : = σpi / fpk, where fpk is the characteristic value of the tensile strength of the 

prestressing steel 
         ρ1000 : is the value of relaxation loss (in %), at 1000 hours after tensioning and at a mean 

temperature of 20°C 
 ρ1000 : = 2,5%  

The influence of shrinkage and creep reduces the relaxation. When taking into account shrinkage and creep 
losses, relaxation loss is: pr(incl,c+s) pr(excl,c+s)0,8σ σ∆ = ∆  
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Explain briefly whether casting a concrete top layer at t = 50 days will have a positive, negative or 
no effect on each of these losses (question 17.5) and why.  
 
Answer 17.5 
 
Shrinkage: No effect 
Creep: Concrete compressive stress at prestressing steel level increases (> -5 N/mm2) => positive 
effect. 
Relaxation: No effect. 
 
Question 17.6 
 
The double T girder (see figure 17.2) is now considered at t = ∞. At t = 50 days a structural concrete 
top layer has been cast. Top layer thickness is x mm. The fictitious tendon is at 150 mm from the 
bottom fiber level.  
 

 
 
Figure 17.2  Overview of the girder including fictitious tendon profile and cross section B 

(tendons are indicative).  
 
Parameters: 
Density concrete    : ρ = 25 kN/m3 

Variable load      : qQk = 10 kN/m 
Dimensions girder    : see figure 17.2 
Strength class of concrete   : C45/55 
Elastic modulus concrete   : 36000 N/mm2  
Strength class of prestressing steel  : Y1860S7  
Number of strands    : 24  
Center of gravity of fictitious tendon  : 150 mm from bottom fibre 
Cross-section of one strand (12.7 mm) : 98,71 mm2 
Initial tensile stress    : σpmo = 0,75·1860 = 1395 N/mm2 
Elastic modulus prestressing steel  : 195000 N/mm2  
Partial load factors    : γG = 1,2   : γQ = 1,5 
 
Twenty-four tendons are applied (Ap = 2369 mm2). At t = ∞ the prestressing force Pm,∞ is assumed 
to be 2930 kN.  
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Draw the ULS strain distribution over the height of cross section B in combination with the 
equilibrium between external and internal forces in cross section B. Use the bi-linear concrete stress 
strain relationship and mark important points/values.  
 
Answer 17.6 
 

 
 
Question 17.7 
 
Determine, from the force equilibrium in cross-section B, the minimum required height of the top 
layer [mm] to be cast on the double T girder to assure that the concrete compressive zone is in the 
flange. Assume that 0.95pu pk sfσ γ= . 
 
Answer 17.7 
 
0,95fpk/γs = 0,95·1860/1,1 = 1606 N/mm2  
 

p p,ULScu
u

cd cd

2369 1606 106 mm450,75 1600
1,5

ANx
bf bf

σ
α α

⋅
= = = =

⋅ ⋅
=> 106 - 50 = min. 56 mm top layer required; 

100 mm is OK. 
 
Question 17.8 
 
A 100 mm top layer has been cast on the double T girder. This results in the following properties:  
Cross-sectional area girder : Ac = 0,54 m2 
Moment of inertia : Ic = 0,0282 m4 
Distance from centroidal axis to top fibre : zt = 0,283 m 
Distance from centroidal axis to bottom fibre : zb = 0,467 m 
Section modulus (top fibre) : Wt = 0,0995 m3  
Section modulus (bottom fibre) : Wb = 0,0604 m3 
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Check whether MRd > MEd at midspan B.  
 
Answer 17.8 
 
Bending moment resistance (relative to centroidal axis level): 
 

( ) ( )
( ) ( ) ( )
Rd t u C p P

3

6 6

283 0,39 106 2369 1606 10 467 150 1606 1395 2369

(919 158) 10 1077 10 Nmm = 1077 kNm

M z x N e Nβ= − + ⋅∆

= − ⋅ ⋅ ⋅ ⋅ + − ⋅ − ⋅

= + ⋅ = ⋅

 

 

( )

( )

2
Ed p m

6

1 1,2 0,54 25 1,5 10 20
8

1560 2369 1395 467 150 10
1560 1047 513 kNm

M e P ∞

−

= ⋅ ⋅ + ⋅ ⋅ −

= − ⋅ ⋅ − ⋅

= − =

 

 
Result: MRd > MEd ; OK.  
 
Question 17.9 
 
Check the assumption of question 17.8. Hint: Use the strain distribution over the height at cross-
section B.   
 
Answer 17.9 
 
Increase of prestressing steel strain: 
 

p u 3 3 3
p

u

3
3

p

600 1063,5 10 3,5 10 16,3 10
106

2930 10 6,3 10
2369 195000

d x
x

ε

ε

− − −

−
∞

−  − ∆ = ⋅ ⋅ = ⋅ ⋅ = ⋅   
  

⋅
= = ⋅

⋅

  

 
total strain: 22,6 ‰ 
 

3 3
3 335 10 7,8 107,8 10 21,4 10

2

− −
− − ⋅ − ⋅

⋅ + = ⋅ 
 

 is required to arrive at 0,95fpk/γs. The strain is a bit 

greater; estimated prestressing steel stress is OK. 
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Example 18 – Reservoir and crack width 
  
A water tank comprises a foundation slab and on top a circular reinforced concrete tank wall with a 
thickness of 150 mm. The inner diameter of the wall is 18 meters and the height is x meters (to be 
determined). The tank wall is reinforced with two layers of bars with diameter 12 mm and a center 
to center distance of 75 mm. There is a sliding connection without friction between the tank wall and 
the foundation, see Figure 18.1.  

 
 
Figure 18.1  Cross-section of the water tank   

 
Concrete strength class   : C25/30 
Density concrete    : ρ = 25 kN/m3 
Reinforcement class B500B  : fyd = 435 N/mm2  
Modulus of elasticity   : Es = 200000 N/mm2 
Concrete wall   
  thickness     : 150 mm 
  concrete cover     : 25 mm 
  allowable crack width   : 0,20 mm 
       : hc.eff = 2,5 (h - d) 
  mean concrete tensile strength:   fctm = 2,6 N/mm2 

  bond strength    : τbm = 2 fctm 
Concrete modulus of elasticity  : Ecm = 31000 N/mm2 
Partial load factors   : γG   = 1,2   

: γQ   = 1,5 
 

Question 18.1   
 
Calculate the maximum tensile force resistance per meter (NRd) of the tank wall in the ultimate limit 
state when the wall is reinforced with 2 layers of 12 mm bars at a center to center spacing of 75 mm.  
 

Answer 18.1 
 
Amount of reinforcement: 

2 2
s

1 10002 12 3013 mm /m
4 75

a π= ⋅ ⋅ ⋅ =  

 
Resistance (ULS): 

3
Rd s yd 3013 435 1311 10 N/m 1311 kN/mN a f= = ⋅ = ⋅ =  
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Question 18.2   
 
Calculate the maximum height of the tank wall in the ultimate limit state if the tank is completely 
filled with water. Hint: Express the tensile force over 1 meter height in the tank wall as a function of 
the water height x, keeping the maximum tensile force constant over 1 meter and assume NRd = NEd. 
 

Answer 18.2 
 
Hoop force (ring force) from the hydrostatic water pressure: N = qR. 
Maximum design hoop force is at the bottom: NEd,max = γQ h ρwater R. 
 
NEd,max = 1,5·h·10·9 = 135h  units kN &m 
 
NEd,max = NRd => 135h = 1311 => h = 9,7 m 
 

Question 18.3   
 
Calculate the crack width wmax and check if the crack width is smaller than 0,2 mm. 
 
Crack width control: 
 

( )ctm
max s sr

bm s,eff s

crack
sr

s

1 Ø 1
2

fw
E

N
A

σ α σ
τ ρ

σ

= −

=
 

 
 

Answer 18.3 
 
Concrete cover = 25 mm 
h - d = 25 + Ø/2 = 25 + 12/2 = 31 mm 
hc.eff = 2,5 (h - d) = 78 mm 
 
2hc.eff = 156 mm > wall thickness = 150 mm => hc.eff zones overlap => effective tensile member 
width = h/2 = 75 mm 
 
Bars: Ø12-75 
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2

s,eff

1 12
4 0,02
75 75

π
ρ

⋅
= =

⋅
 

 
21 12

4 0,02
75 75

π
ρ

⋅
= =

⋅
 

 
Hoop force (ring force) from the hydrostatic water pressure: N = qR. 
SLS check: Maximum hoop force is at the bottom: NE,max = h ρwater R. 
 
NE,max = 9,7·10·9 = 873 kN/m 
 

Steel stress in SLS: 
3

E,max 2
s,max

s

873 10 290 N/mm
3013

N
a

σ ⋅
= = =  

Note: This result is as expected. It’s SLS, so no load factor applied. ULS steel stress 435 N/mm2 now 
is 435/1,5 = 290 N/mm2. 
 
Steel stress directly after cracking: 
 

2s
sr ctm

c

1 200 11 2,6 1 0,02 147 N/mm
31 0,02

Ef
E

σ ρ
ρ

   = + = ⋅ + ⋅ ⋅ =   
  

 

 
Maximum crack width: 
 
Assume long term loading: 
 

( ) ( )ctm
max s sr 3

bm s,eff s

1 Ø 1 1 2,6 12 1 290 0,3 147 0,18 mm
2 2 2 2,6 0,02 200 10

fw
E

σ α σ
τ ρ

= − = ⋅ ⋅ ⋅ ⋅ − ⋅ =
⋅ ⋅  

Smaller than 0,2 mm; OK. 
 

Question 18.4  
 
Is the calculated crack width in the phase “fully developed crack pattern” or not? 
 

Answer 18.4 
 
NE,max = 873 kN/m 
 
Concrete tensile stress assuming that the concrete is uncracked in SLS: 
 

mlukovic
Highlight
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3
E,max 2

c,max
873 10 5,8 N/mm

1000 150c

N
a

σ ⋅
= = =

⋅
>> σcr 

 
Fully developed crack pattern (or: stabilized cracking stage) since NE > Ncrack. 
 

Question 18.5   
 
Calculate the crack width when the bars are replaced by 16 mm bars without changing the cross-
sectional area of steel per meter tank wall (As/m is kept constant). 
 

Answer 18.5  
 
Ø12 mm bars (from Answer 18.4): 
 

( ) ( )ctm
max s sr 3

bm s,eff s

1 Ø 1 1 2,6 12 1 290 0,3 147 0,18 mm
2 2 2 2,6 0,02 200 10

fw
E

σ α σ
τ ρ

= − = ⋅ ⋅ ⋅ ⋅ − ⋅ =
⋅ ⋅  

 
Now apply Ø16 mm bars; same amount of reinforcement. 
 
The only variable that changes is the bar diameter Ø: 
 

max
16 0,18 0,24 mm
12

w = ⋅ =  

 

Question 18.6   
 
Is the crack spacing (crack distance) larger or smaller in case 16 mm bars are used instead of 12 mm 
bars, given that As/m is constant? 
 

Answer 18.6  
 
Crack width expression: 

( )ctm
max s sr

bm s,eff s

1 Ø 1
2

fw
E

σ α σ
τ ρ

= −
 

The crack spacing is the first part of the expression; the mean steel strain is the second part. 
=> An increase of Ø results in an increase of the crack spacing.  
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Example 19 - Torsion 
 
A rectangular concrete beam (see figure) is clamped on both sides in infinitely rigid walls. The span 
of the beam is 7.5 meters. The width of the beam is 400mm. The beam height is 600 mm. The beam 
is loaded by an evenly distributed load qEd = 7.2 kN/m due its own weight, and by a point load FEd = 
600 kN in the middle of the span. Because this point load is introduced with an eccentricity of 200 
mm, a twisting (torsion) moment (TEd = 120 kNm) is exerted on the beam. 
 

 
 
General parameters: 
 
Concrete strength class : C35/45 
 weight density of concrete : γc = 25 kN/m3 
  
Reinforcement class B500B    : fyd = 435 N/mm2 
  modulus of elasticity :  : Es = 200000 N/mm2 
  estimated diameter of the main longitudinal reinf. : Ø20 
  diameter of the stirrups : Ø10  
  
Concrete cover 
(from outer reinforcement, stirrups)  

: c=40 mm 
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Question 19.1  
 
Determine the distribution of the shear force and draw the shear distribution diagram (in kN). 
 
Answer 19.1  
 
Shear force in the beam is caused by the uniformly distributed load qEd = 7.2 kN/m and by the point 
load in the middle of the span FEd = 600 kN. Shear force diagram can be drawn as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 19.2  
 
Determine the distribution of the torsion moment and draw the corresponding diagram (in kNm). 
 
Answer 19.2  
 
The torsion moment in the beam is caused by the eccentric point load FEd = 600 kN (with an 
eccentricity of 0.2 m) in the middle of the span: 600 0.2 120EdM F e kNm= × = × = .  
The torsion moment diagram can be drawn as follows: 
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Question 19.3  
 
Which cross-section is governing for the control of the combination of shear and torsion, and which 
combination of forces must be included there? 
 
Answer 19.3  
 
Governing cross-section is the cross-section immediately adjacent to the supports; 
This cross-section must be checked for: 
 

• shear force of 327 kN ( ,1 327EdV = kN) 
 
 
 
 
 
 
 
 
 
 

 
 
 

• torsion moment of 60 kNm ( ,1 60EdT = kNm) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 19.4  
 
Check whether the governing combination of forces (as calculated in question 10.3) can be resisted 
without additional reinforcement (that is: with minimum reinforcement only).  
 
Answer 19.4  
 
The reinforcement is not needed if the following is satisfied: 
 

, ,

1Ed Ed

Rd c Rd c

V T
V T

+ >   

 
 
In theory, in order to check if the governing combination can be secured without shear and 
torsion reinforcement, and for the calculation of the required reinforcement (stirrups), the shear 
force at the support can be reduced by 0.54 7.2 3.9kNEdd q× ≅ × = ; when checking the 
maximum compressive stress this reduction should not be applied.  
 
Because the difference in this specific case is small, in this example it is calculated with the 
“not reduced” shear force of 327 kN. 

 

Additional information 

 
 
Shear stresses are caused by a shear force and a torsion moment. Therefore, the maximum shear 
stresses in the cross-section can be determined by adding the shear stresses due to the shear 
force and the shear stresses due to the torsion moment, in the parts of the cross-section where 
the shear stresses have the same direction: 

 

Additional information 
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The shear capacity VRd,c (without shear reinforcement) can be determined as follows: 
 

, ,Rd c Rd cV b dν= × ×   
 
where ,cRdv  is the shear resistance stress: 

1
3

,c 10.12 (100 )Rd ck cpv k f kρ σ= × × +  with a minimum of  3/2
Rd,c min ck 10.035 cpv v k f k σ= = × +   

where cpσ  is the concrete compressive stress in cross-section due to axial loading and/or 

prestressing. In this case cpσ =0.  

and 1 1600 40 10 20 540 mm
2 2stirrupd h c Ø Ø= − − − × = − − − × =  

Since the amount of longitudinal reinforcement is not known (ρ), the value of ,cRdv : 
1
3

,c 0.12 (100 )Rd ckv k fρ= × ×  cannot be determined.  
 
Therefore, the shear capacity can be determined only based on the minimum shear resistance 
stress: 3/2

min ck 10.035 cpv k f k σ= × +  where 

200 200min 1 ;2 min 1 ;2 1,61
540

k
d

   
= + = + =   

   
 and ck (C35 / 45) 35 MPaf =  

3/2 3/2
min ck0,035 0.035 1.61 35 0.42MPav k f= × = × × =  

 

, min 0.42 400 540 90720 N=90 kNRd cV b dν= × × = × × =  
 
The torsion moment capacity without torsion reinforcement, or the torsional cracking moment, 
can be determined as follows: 
 

, ,2Rd c k ctd ef iT A f t= × × ×   
 
where Ak is the area enclosed by the centre-lines of the connecting walls, including inner hollow 
areas. For the rectangular cross-section: 

 , ,
1 1  2 2
2 2k ef i ef iA b t h t   = − × × − ×   

   
  

 
and ,ef it is the effective wall thickness:  

, max( ;2 )ef i i
A f
u

t = ×  

 
where fi  is the distance between the edge and the centre of the longitudinal reinforcement: 
 

1
2

 

i stirrupf c Ø Ø= + + ×
  

𝑓𝑓 𝑒𝑒 

𝑓𝑓𝑖𝑖 = 40 + 10 +
1
2

× 20 = 60𝑚𝑚𝑚𝑚 
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A is the total area of the cross-section within the outer circumference u, including inner hollow 
areas: 
 

2400 600 240000 A b h mm= × = × =  
 

( ) ( )2 2 400 600 2000 u b h mm= × + = × + =   
  

, max( ;2 )ef it A f
u

= ×
 

𝑡𝑡𝑒𝑒𝑒𝑒,𝑖𝑖 = max �
240000

2000
; 2 × 60� = 120𝑚𝑚𝑚𝑚 

 

2
1 1 , ,

1 1 1 1  2 2 400 2 120 600 2 120 134400
2 2 2 2k ef i ef iA b h b t h t mm       = × = − × × − × = − × × − × =       

       
 

2/3 2/3
,0,05 / (0.7 0.3 ) / (0.7 0.3 35 ) /1.5 1.50ctd ctk c ck cf f f MPaγ γ= = × × = × × =   

 
The torsion moment capacity without torsion reinforcement is: 

, , 134400 1.52 120 48 42 .Rd c k ctd ef i kNmT A f t= × × × × =× ×=  
 

, ,

327 60
91 48.

3.59 1.24 4.84 1.0
4

Ed Ed

Rd c Rd c

V T
V T

+ > + = + = >>  

  
Conclusion: Additional reinforcement is required to resist this combination of shear and torsion 
forces. 
 
 
Question 19.5  
 
Check if the governing combination of forces (as calculated in question 19.3) can be taken by the 
concrete strut in compression, and at which slope of the strut (and thus also the crack angle) is the 
maximum capacity found? 
 
Answer 19.5 
 
The maximum resistance of a member subjected to torsion and shear is limited by the capacity of the 
concrete struts. In order not to exceed this resistance the following should be satisfied: 

, ,

1,0Ed Ed

Rd max Rd max

V T
V T

+ ≤   

 
where the maximum design shear resistance is: 
 

1
, 1 sin cos

cot tan
cw cd

Rd max cw cd
b z fV b z fα ν α ν θ θ

θ θ
× × × ×

= = × ×× × × ×
+

   

 
For non-prestressed structures 1cwα =  and 1ν  is a strength reduction factor for concrete cracked in 
shear: 

1
350.6 1 0.6 1 0.516

250 250
ckfν    = × − = × − =      
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The maximum combination of shear and torsion can be withstood with the largest crack inclination 
angle θ, θ = 45°. 
 

1
, cot tan

cw cd
Rd max

b z fV α ν
θ θ

× × × ×
=

+
 

 
2

, 1
35 2sin cos 1 400 0.9 540 0.516 ( ) 1170
1.5 2Rd max cw cdV b z f kNα ν θ θ= × × × × × = × × × × × × =×  

 
The design torsional resistance moment is: 
 

, ,2 sin cosRd max cw cd k ef iT f A tν α θ θ= × × × × × × ×  where 1ν ν=  and cwα =1 

,
35 2 22 0.516 1 134400 120 194
1.5 2 2Rd maxT kNm= × × × × × × × =  

 

, ,

Ed Ed

Rd max Rd max

V T
V T

+ =  

 
60

1170
3

94
27

1
= + =  

 
0.28 0.31 0.59 1= + = <  

 
 
 
Conclusion: Concrete  
struts can withstand the  
acting combination of  
forces if the crack  
inclination angle is 45°. 

 

 

 

 

cwσ  is the compression strut stress; 

for the maximum capacity 1cw cdfσ ν=  
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Question 19.6 
 
Calculate the required stirrups (in mm2 / m per side of the beam) and longitudinal reinforcement (in 
mm2) in order to be able to resist the occurring combination of forces (calculated in question 19.3), 
assuming the crack inclination angle of 45°. 
 
Answer 19.6 
 
Required stirrups for the shear force: 

2327000 1.55 /
cot 0.9 540 1 435

sw Ed

w ywd

A V mm mm
s z fθ

= = =
× × × × ×

  

 
Required stirrups for the torsion moment (see the figure below): 

6
260 10 0.51  /

2 cot 2 134400 1 435
sw Ed

w k ywd

A T mm mm
s A fθ

×
= = =

× × × × × ×   
 

 
 

 
 
Required stirrup reinforcement for the shear force can be distributed over the two legs of the stirrups. 
The required stirrup reinforcement for torsion applies only to a single bar (leg) cross-section. So the 
required stirrup reinforcement per side of the beam is: 
 

 

Shear force due to torsion in the rectangular cross section (longer side) is , 12
Ed

Ed i
k

TV h
A

= ×  

Shear reinforcement for the torsion can be determined analogous to the shear reinforcement needed 

for the shear force: ,

,max 1 cot
Ed isw

w yd

VA
s h fθ

=
× ×

, from which the following equation for the required 

reinforcement for the torsion moment can be derived: 
2 cot

sw Ed

w k ywd

A T
s A fθ

=
× × ×

 

 

 

Calculation of the required stirrups 

Additional information 
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2 21 1.55 0.51 1.29  / 1.29 /
2

sw

w

A mm mm mm m
s

= × + = =   

 
By keeping the Østirrup =10 mm, the spacing between the stirrups is 60 mm.  
This is a small spacing. It is more practical to opt for a larger stirrup diameter, e.g. for Ø12 or even 
Ø16. 
 
Longitudinal reinforcement required for the torsion moment (see the figure below): 
 

6
2

,
cot 60 10 1 (2 (480 280)) 780 

2 2 134400 435
Ed k

s langs
k yd

T uA mm
A f

θ× × × × × × +
= = =

× × × ×∑   

 
Longitudinal reinforcement can be also determined per side, as follows: 
 

- for the long side: 
6

2
,

1

cot
2

60 10 1 246.3 
435 2 280

Ed
s l

yd

TA
f b

mmθ ××
= =

×
=

× × × ×
 

 
- for the short side: 

6
2

,
1

cot
2

60 10 1 143.7 
435 2 480

Ed
s l

yd

TA
f h

mmθ ××
= =

×
=

× × × ×
 

 
The total amount of longitudinal reinforcement can then be calculated as: 
 

2
, 2 246.3 2 143.7 7t

2
8co 0Ed k

s langs
k yd

T uA
A f

mmθ
× + × =

× ×
= =

× ×∑  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Calculation of the needed longitudinal reinforcement 
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Note that in this problem there will be also longitudinal reinforcement due to the shear force. In 
general, this additional longitudinal reinforcement is taken into account by shifting the bending 
moment line. 
 
The longitudinal reinforcement coming from the bending moment (note that in this example, there 
are also bending moments present in the beam) is not calculated here as it seemed too much for this 
example. 
 
The horizontal force resulting from the shear force (that needs to be taken by longitudinal 
reinforcement) will be: 

 
Note that this horizontal component is both dependent on the angle of the crack, θ, as well as the 
angle of shear reinforcement, α.  
 

 
 
Try to think where this additional reinforcement will be placed. In top or/and bottom zone? 
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Example 20 - Torsion 
 
The cables of a cable-stayed bridge are loading the top of the pylon according to the figure below. 
The anchor anchors are placed diagonally in A and C or in D and B, see the cross-section. In Figure 
20.1, the cross-section A-A just above the next cable closure (D / B) is given. 
 
 

 

T1

T1

T1

T1

T2

T2

T2

T2

A

A

D

D

C

C

B

B

30°

1,
5m

1,
5m

1,
5m

A A

 
                           Cross-section A-A         Side view pylon 
 
 
Figure 20.1: The pylon of the cable-stayed bridge.  
 
 
General parameters: 
 
Concrete strength class : C35/45 
 weight density of concrete : γc = 25 kN/m3 
  
Reinforcement class B500B    : fyd = 435 N/mm2 
  modulus of elasticity :  : Es = 200000 N/mm2 
  minimal diameter of the stirrups : Ø16  
  
Concrete cover 
(from outer reinforcement, stirrups)  

: c = 50 mm 
 

  
Force in the cable     : T1 = T2 = 4000 kN 
 cable at an angle of 30º  
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Question 20.1 
 
Determine all the forces and moment distributions in the top 4.5 m of the pylon. 
 
Answer 20.1 
 
The forces that act on the pylon can be decomposed as follows: 

 
The horizontal component of a cable force is: 4000 cos 30º   2000 3  3464 kN× = =    
The vertical component is:    4000 sin 30º   4000 0.5  2000 kN× = × =   
 
The normal force in the column increases per engagement level of the cables by: 

2 2000 4000kN× = .  
With regard to the transverse force, the horizontal components cancel each other. 
However, they provide a torsion moment equal to the horizontal component times the arm =  
       3464 0.6 2078kN m kNm× =  
 
For each level of engagement of the cables, the normal forces of the cables increase the already 
present normal force in the pylon; in relation to the torsional moments these turn in the opposite 
direction and eliminate each other. 
 

 
 

Side view 

Top view 
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Question 20.2 
 
Calculate the stirrup reinforcement in the cross-section A-A. 
 
Answer 20.2 
 
The design value of the torsion moment is TEd = 2078 kNm. 
 
The effective wall thickness is: 
 

1000 1000 250
4 1000ef

At mm
u

×
= = =

×
 

 
This should not be smaller than 2 f×  where f  is the distance from the edge to the centre of the 
longitudinal reinforcement: 

1
2stirrupf c Ø Ø= + + ×  

 
Assuming that the dimeter of the bending reinforcement is 20Ø mm=  

150 16 20 76 
2

f mm= + + × = →  2 152 250 250eff mm mm t mm× = << → =  

 
The area enclosed by the centre-lines of the connecting walls, including inner hollow areas is: 

3 2(1000 250) (1000 250) 562.5 10kA mm= − × − = ×  
 
Torsional shear stress in the wall is: 

6

, 3
2078 10 7.39

2 2 562.5 10 250
Ed

T i
k ef

T MPa
A t

τ ×
= = =

× × × × ×
 

 
Checking if the maximum torsional resistance moment is not exceeded: 
 

,max 2 sin cosRd cd k efT f A tν θ θ= × × × × × ×  

350.6 1 0.6 1 0.52
250 250

ckfν    = × − = × − =      
 

 
- First check the inclination angle of the compression strut which leads to the smallest 

number of stirrups, θ = 21.8º: 
3 6

,max
352 0.52 562.5 10 250 sin 21.8º cos21.8º 1176.7 10
1.5RdT Nmm= × × × × × × × = ×  

This is smaller than the applied design torsion moment  TEd = 2078 kNm. 
 

- Then check the maximum allowed inclination angle of the compression strut θ = 45º: 
3 6

,max
352 0.52 562.5 10 250 sin 45º cos45º 1706.3 10
1.5RdT Nmm= × × × × × × × = ×  

This is also smaller than the applied design torsion moment  TEd = 2078 kNm. 
 
Conclusion: The resistance of the compression strut is exceeded; the cross-sectional dimensions 
and / or the concrete strength class must be adjusted (increased). 
 
Calculation of the required amount of stirrups for the given cross-section: 
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Shear force in the effective wall thickness, which (due to the symmetry of the square cross-section) 
is equal at all the four sides, is: 
 

1Ed T efV t hτ= × ×  
 
With the shear stress of 7.39 MPa, the effective wall thickness of 250 mm and the length of the 
wall 1 1000 750 efh t mm= − = : 
 

67.39 250 750 1.39 10EdV N= × × = ×  
 
 
 
 
 
 
 
 
 
This shear force has to be taken by stirrups. With the inclination of the compression strut of 45°: 

6
2

1

1.39 10 4.26 /
cot 45º 750 435 1

sw Ed

w ywd

A V mm mm
s h f

×
= = =

× × × ×
 

 
Use the cross-sectional area of one stirrup leg. For a stirrup Ø 16 mm, 201 mm2 of reinforcement is 

present. This results in a stirrup spacing 201 47 
4.26ws mm= =  , which is too small for practical 

application. 
 
Question 20.3 
 
Is the amount of longitudinal reinforcement affected by this specific loading case? If so, determine 
the quantity (mm2). 
 
Answer 20.3 
 
Yes, due to the torsional moment, additional longitudinal reinforcement is required: 
 

6
3 2

3
2078 10 4 750cot cot 45º 12.7 10

2 4352 562.5 10
Ed k

sl
k yd

T uA mm
A f

θ × ×
Σ = × × = × × = ×

× ×
 

 

This is approximately 
3

212.7 10 3175
4

mm×
=  per side of the cross-section. The area of a 

reinforcement bar Ø 25 mm is 491 mm2. This results in 7 Ø 25 bars per side. 
 
Note: Of course, the favourable influence of the normal force may still be included when the final 
required amount of reinforcement is calculated: On the compression side, the longitudinal 
reinforcement may be reduced in relation to the available compressive force. In the upper part of 
the pylon the calculation value of the pressure force is 2000 kN. This implies that the total 

reduction of the required longitudinal reinforcement over all 4 sides is 
3

24000 10 9195
435

mm×
= .  

 

 

Shear force due to torsion in the rectangular cross-section can be also calculated as follows: 12
Ed

Ed
k

TV h
A

= ×  

For the square cross-section: 
6

6
1

1

2078 10 1.39 10
2 2 2 750

Ed Ed
Ed

k

T TV h N
A h

×
= × = = = ×

×
 

 

Additional information 
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Question 20.4 
 
As a result of an asymmetrical load the cable forces T1 and T2 change. Increase the cross-section to 
1.5 m x 1.5 m. The position of the gripping points of the lines changes; they slide along, each over 
250 mm because the cross-section becomes wider. But, in the direction perpendicular to it, their 
location does not change; they remain there 0.6 m apart. 
 
T1 = 4500 kN and T2 = 3500 kN (calculation value). 
Answer questions 20.1 and 20.2 again. 
 
Answer 20.4 
 
The two cable forces can be composed as follows: 
 
T1: 

- The horizontal component of a cable force is:  4500 cos30º   3897 kN× =    
- The vertical component is:    4500 sin 30º   2250 kN× =   

T1: 
- The horizontal component of a cable force is:  3500 cos30º  3031 kN× =    
- The vertical component is:    3500 sin 30º   1750 kN× =   

 
For each engagement level of two cables there is now: 
 

- Shear force:    3897 3031 866kN− =   
 

- Torsion moment from the horizontal forces in the pylon, each with an arm of 0.3 m from 
the centre line of the pylon: 0.3 3897 0.3 3031 2078kNm× + × =   

 
- Vertical compression force: 2250 1750 4000kN+ =   

 
- Bending moment: 

The differences between the vertical and horizontal components of the cable forces give 
bending moments. With respect to an axis perpendicular to the plane of the given cross 
section, the moment consists of two components: 
 

- As a consequence of vertical cable forces  2250 0.75 1750 0.75 375 kNm× − × = −   
This is a local, concentrated moment. 
 

- As a consequence of horizontal cable forces 
These forces only contribute to the bending moment in the lower cross-sections. So, 
in a cross-section 1.5 m lower, precisely where the new set of cables is engaged, the 
bending moment is:    3897 1.50 3031 1.50 1299 kNm× − × =  
  
This moment increases linearly between the two engagement levels. The number of 
cables is also increasing in the pylon downwards. In section A-A there are 
ultimately three upper engagement levels with cables. This provides a total moment 
of:   
 ( )3 375 3 1299 2 1299 1 1299 6669 kNm× − + × + × + × =   

A layer of cables higher: ( )2 375 2 1299 1 1299 3147 kNm× − + × + × =  

A layer of cables higher: ( )1 375 1 1299 924 kNm× − + × =  
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The design values of the normal force and torsion moment did not change. 
 
The effective wall thickness is: 
 

1500 1500 375
4 1500ef

At mm
u

×
= = =

×
 

 
This is, of course, again smaller than 2 152f mm× =  
 
The area enclosed by the centre-lines of the connecting walls, including inner hollow areas is: 

3 2(1500 375) (1500 375) 1265.6 10kA mm= − × − = ×  
 
Torsional shear stress in the wall is: 

6

, 3
2078 10 2.19

2 2 1265.6 10 375
Ed

T i
k ef

T MPa
A t

τ ×
= = =

× × × × ×
 

 
Check if the maximum torsional resistance moment is not exceeded: 
 

,max 2 sin cosRd cd k efT f A tν θ θ= × × × × × ×  

350.6 1 0.6 1 0.52
250 250

ckfν    = × − = × − =      
 

 
- First checking for the inclination angle of the compression strut which leads to the smallest 

number of stirrups, θ = 21.8º: 
3 6

,max
352 0.52 1265.6 10 375 sin 21.8º cos21.8º 3971.2 10
1.5RdT Nmm= × × × × × × × = ×  

 
This is larger than the applied design torsion moment  TEd = 2078 kNm. 
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In the cross-section is also there is also a shear force, since the horizontal components in the two 
cables are not equal. In the considered cross section A-A this is 2598 kN. 
The shear resistance of the compression strut is: 
 

,max 1 1 sin cosRd w cdV b h fν θ θ= × × × × ×    

1
350,6 1 0,6 1 0,52

250 250
ckf

ν ν    = = ⋅ − = ⋅ − =     
 

 
For the inclination angle of the compression strut θ = 21.8º: 
 

3
,max

351500 (1500 375) 0.52 sin 21.8º cos21.8º 7060.0 10
1.5RdV N= × − × × × × = ⋅  

 
Unity check for the most heavily loaded side: 
 

,max ,max

2078 2598 0.52 0.37 0.89 1.0
3971 7060

Ed Ed

Rd Rd

T V
T V

+ = + = + = <  

 
Therefore, the concrete strut can withstand the acting combination of forces, also with the most 
unfavourable inclination of the compression strut. 
 
When calculating the required amount of stirrups for the given cross-section, the shear force in one 
wall, due to torsion moment. should be considered: 
 

1Ed T efV t hτ= × ×  
 
Due to the symmetry, this shear force is equal in all four sides of the square cross section. With the 
shear stress of 2.19 MPa, effective wall thickness of 375 mm and the length of the wall 

1 1500 1125 efh t mm= − = : 
 

62.19 375 1125 0.92 10EdV N= × × = ×  
 
The shear force in the cross-section is 2598 kN. This will be taken with two sided stirrups, meaning 
that 1299 kN ( 61.3 10 kN≈ × ) should be taken per one stirrup leg. With the inclination angle of the 
compressive strut of 21.8º, the amount of required reinforcement can be calculated as follows: 

6
2

1

(0,92 1.30) 10 1.81 /
cot 21.8º 1125 435 2.5

sw Ed

w ywd

A V mm mm
s h f

+ ×
= = =

× × × ×
  

 
For one Ø 16 mm stirrup (201  mm2 per one side of the stirrup) the spacing between stirrups is   
sw = 201 / 1,81 = 111 mm.  
 
Question 20.5 
 
Can the bending moment be taken by a 1.5 x 1.5 m2 cross section? (Show this with a very global 
calculation). 
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Answer 20.5 
 
The design value of the bending moment is 6669 kNm and of the normal, compressive force is 
12000 kNm. The reinforcement can be calculated based on: 
 

Rd s ydM z A f= × ×  
 
With 1500 50 16 20 / 2 1424d = − − − =  mm and 0.9 1282 z d mm= × = , the required amount of 
reinforcement is: 
 

6
3 26669 10 12,0 10

1282 435sA mm⋅
= = ⋅

⋅
, which corresponds to 38 Ø 20 mm; 24 Ø 25 mm or 15 Ø 32 mm. 

 
If this reinforcement cannot be placed in one line, the effective depth of the cross-section, d, and 
consequently the lever arm of internal forces z, have to be calculated again.  
 
In this calculation the favourable effect of the normal pressure force is not considered. This can be 
done by splitting the pressure force into two forces of equal size. One force is shifted to the centre 
of the reinforcing steel; the other force is shifted over the same distance in the direction of the 
concrete compression zone. The latter force is assumed to be taken up immediately by an 
additional concrete compression force acting at the same place. The compressive force at the 
location of the reinforcing bar results in a reduction of the required quantity of reinforcing steel: 
 

3
2

,
0.5 0.5 12000 10 13800

435
Ed

s reduction
yd

NA mm
f

× ×
= = =  

 
This approach is only possible if the concrete compression zone can develop. With an internal lever 
arm of 1282 mm for the bending moment, the resulting concrete pressure is: 
 

6
66669 10 5.2 10

1282cN N×
= = ×  

 
With an additional pressure force of 0.5 12000 6000kN× =  as a result of the design value of the 
additional external normal force, the total concrete pressure force becomes 11200 kN. For the 
1500  mm wide pressure zone in strength class C35 / 45 (full-density stress-strain relationship 
under pressure α = 0.75): 
 

311200 10 427350.75 1500
1,5

ux mm×
= =

× ×
 

The centre of the concrete compressed zone is 427 0.39 427
18 7 166× ≈ × =  mm from the edge. 

This is more inward than where the centre of the reinforcing bar is, namely approximately 
50 16 20 / 2 76+ + =  mm from the edge. The assumption has therefore not been correct and a more 
accurate calculation must show how much reinforcement is really needed. 
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Example 21 - Torsion 
 
A concrete beam (length 10 m) is fully clamped at both ends in a concrete wall. The beam is has a 
console over a distance of 8 m. A uniformly distributed line load acts on the console. 
 

 
 
General parameters: 
 
Dimensions of the concrete beam  : b = 400 mm;  

  h = 700 mm 
Dimensions of the console : b = h = 300 mm 

Concrete strength class : C35/45 
 weight density of concrete : γc = 24 kN/m3 
  
Reinforcement class B500B    : fyd = 435 N/mm2 
  modulus of elasticity :  : Es = 200000 N/mm2 
  diameter of the stirrups : Ø10 
  diameter of longitudinal reinforcement : Ø20 
  
Concrete cover 
(from outer reinforcement, stirrups)  

: c = 30 mm 
 

  
Characteristic value of the distributed load on console : qQ,k = 50 kN/m 
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Question 21.1 
 
Calculate the design value of the total torsion moment that acts on the girder (taking the selfweight 
of the console into account) and draw the torsion moment line for the girder. 
 
Answer 21.1 
 
The total distributed load on the console, taking into account the self-weight, can be calculated as 
follows:   (1.2 0.3 0.3 24 1.2) (1.5 50) 77.59 /= × × × × + × =totq kN m  
 

Total torsion moment is:  0.477.59 0.15 8 217.2
2

 = × × = × + × = 
 

Ed totT q e l kNm  

 
This torsional moment is composed out of two equal parts, both ending at the support: 

 
  
Question 21.2 
 
It is now assumed that stirrups are required. Calculate the amount of stirrups needed to resist the 
torsion moment. 
 
Answer 21.2 
 

ef
400 700 127.3 mm

2 (400 700)
At
u

×
= = =

× +
 

 
1 , 400 127.3 272.7ef ib b t mm= − = − =  

 
1 , 700 127.3 572.7ef ih h t mm= − = − =  

 
Condition ( ), 2 30 10 20 / 2 100 ef it mm> × + + =  is satisfied. 
 

3 2(400 ) (700 ) 156.2 10k ef efA t t mm= − × − = ⋅  
 

Shear stress due to the torsion: 
2 2

Ed Ed
T T ef

k ef k

T Tt
A t A

τ τ= → × =
× × ×

 

The reinforcement can be calculated as follows: 

1 cot
sw Ed

w ywd

A V
s h f θ

=
× ×

 where 1 12
Ed

Ed T ef
k

TV t h h
A

τ= × × = ×
×

 

6

1 3 2

1

108.6 10
3482 2 156.2 10 0,80 /

cot 435 1.0 435

Ed

sw k

w ywd

T h
A A mm mm
s h f θ

××
× × ×= = = =

× × ×
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Note: The inclination angle of the compression strut is assumed to be 45°. Furthermore, as h1, the 
length of a shear panel, is not in the equation, the required reinforcement is equal for each shear 
panel. For stirrup reinforcement Ø10 mm, the spacing is sw = 98 mm. 
Question 21.2 
 
Calculate the total amount of stirrups that is needed to take the torsion moment and the shear force 
and calculate the spacing between the stirrups for a stirrup diameter of Ø10 mm. 
 
Answer 21.2 
 
In order to calculate the total amount of reinforcement, first the shear force acting on the beam has 
to be calculated. 
 
Distributed load from the beam itself (acting over the length of 10 m) is: 

1 1.2 0.4 0.7 24 8.06 /dq kN m= × × × =  
 
Distributed load from the console (acting over the length of 8 m), as previously calculated is: 

2 77.59 /dq kN m=  
 
Resulting shear force at the support is: 

10 88.06 77.59 356.7
2 2EdV kN= × + × =  

 
When calculating the amount of stirrups needed to take the shear force, again the inclination angle 
of the compression strut (the same as with torsion) is considered to be 45º: 

3
2350.7 10 1.38 /

cot 0.9 (700 30 10 20 / 2) 435 1.0
sw Ed

w ywd

A V mm mm
s z f θ

×
= = =

× × × − − − × ×
 

 
In order to calculate the total reinforcement for the shear stresses coming both from the shear force 
and the torsion moment, the calculated torsion and shear reinforcement must be combined: 

21.380.8 1.49 /
2

sw

w

A mm mm
s

= + =  

The required spacing of the reinforcement Ø10 mm is 279 1.49 / 53w
w

mm mm s mm
s

= → = . 

 
Question 21.3 
 
Calculate the total required amount of longitudinal reinforcement for torsion and calculate how 
much reinforcement is needed in each of the four side faces of the beam. 
 
Answer 21.3 
 
The total longitudinal reinforcement can be calculated as follows: 
 

6
2

3
cot 108.6 10 1.0 2 (272.7 572.7) 1353

2 2 156 10 435
Ed k

sl
k yd

T uA mm
A f

θ× × × ⋅ +
= ⋅ = ⋅ =

× × ×∑  

 
This reinforcement has to be equally distributed over the circumference of the beam: 

Per side:    2572.7 1353 459
2 (272.7 572.7)

mm⋅ =
⋅ +

 6  10Ø→  ( 2471mm )  
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At top and bottom:   2272.7 1353 218
2 (272.7 572.7)

mm⋅ =
⋅ +

 3  10Ø→  ( 2236mm ) 

Note: When determining the definitive reinforcement, the reinforcement needed for the bending 
moment must also be taken into account. 
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